Show simple item record

contributor authorYüksel Alpaydın, Ceren
contributor authorColpan, C. Ozgur
contributor authorKaraoğlan, Mustafa Umut
contributor authorKarahan Gülbay, Senem
date accessioned2022-02-06T05:39:01Z
date available2022-02-06T05:39:01Z
date copyright9/3/2021 12:00:00 AM
date issued2021
identifier issn0195-0738
identifier otherjert_143_12_120909.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4278474
description abstractThanks to its features such as being harmless to the environment, not creating noise pollution, and reducing oil dependence, many countries have started promoting the use of fuel cell vehicles (FCVs) and making plans on enhancing their hydrogen infrastructure. One of the main challenges with the FCVs is the selection of an effective hydrogen storage unit. Compressed gas tanks are mostly used as the hydrogen storage in the FCVs produced to date. However, the high amount of energy spent on the compression process and the manufacturing cost of high-safety composite tanks are the main problems to be overcome. Among different storage alternatives, boron compounds, which can be easily hydrolyzed at ambient temperature and pressure to produce hydrogen, are promising hydrogen storage materials. In this study, a 700-bar compressed gas tank and a sodium borohydride (NaBH4)-based hydrogen storage system are compared for a passenger fuel cell vehicle in terms of the range of the vehicle. The energy storage and production system of the FCV were modeled in matlabsimulink® environment coupling the modeling equations of each component after finding the power requirement of the vehicle through vehicle dynamics. Then, the simulations were performed using the speed profile of the New European Drive Cycle (NEDC) and the acceleration requirements. According to the simulation results, the NaBH4-based hydrogen storage system provided a 4.42% more range than the compressed gas tank.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Comparison of the Effects of Sodium Borohydride-Based Hydrogen Storage System and Compressed Hydrogen Storage Tank on the Fuel Cell Vehicle Performance
typeJournal Paper
journal volume143
journal issue12
journal titleJournal of Energy Resources Technology
identifier doi10.1115/1.4052163
journal fristpage0120909-1
journal lastpage0120909-11
page11
treeJournal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record