Show simple item record

contributor authorAugustine, Chad
contributor authorJohnston, Henry
contributor authorYoung, David L.
contributor authorAmini, Kaveh
contributor authorUzun, Ilkay
contributor authorKazemi, Hossein
date accessioned2022-02-05T22:35:36Z
date available2022-02-05T22:35:36Z
date copyright2/12/2021 12:00:00 AM
date issued2021
identifier issn0195-0738
identifier otherjert_143_11_112004.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4277811
description abstractCompressed air energy storage (CAES) stores energy as compressed air in underground formations, typically salt dome caverns. When electricity demand grows, the compressed air is released through a turbine to produce electricity. CAES in the US is limited to one plant built in 1991, due in part to the inherent risk and uncertainty of developing subsurface storage reservoirs. As an alternative to CAES, we propose using some of the hundreds of thousands of hydraulically fractured horizontal wells to store energy as compressed natural gas in unconventional shale reservoirs. To store energy, produced or “sales” natural gas is injected back into the formation using excess electricity and is later produced through an expander to generate electricity. To evaluate this concept, we performed numerical simulations of cyclic natural gas injection into unconventional shale reservoirs using cmg-gem commercial reservoir modeling software. We tested short-term (diurnal) and long-term (seasonal) energy storage potential by modeling well injection and production gas flowrates as a function of bottom-hole pressure. First, we developed a conceptual model of a single fracture stage in an unconventional shale reservoir to characterize reservoir behavior during cyclic injection and production. Next, we modeled cyclic injection in the Marcellus shale gas play using published data. Results indicate that Marcellus unconventional shale reservoirs could support both short- and long-term energy storage at capacities of 100–1000 kWe per well. The results indicate that energy storage in unconventional shale gas wells may be feasible and warrants further investigation.
publisherThe American Society of Mechanical Engineers (ASME)
titleEvaluation of Energy Storage Potential of Unconventional Shale Reservoirs Using Numerical Simulation of Cyclic Gas Injection
typeJournal Paper
journal volume143
journal issue11
journal titleJournal of Energy Resources Technology
identifier doi10.1115/1.4049736
journal fristpage112004-1
journal lastpage112004-15
page15
treeJournal of Energy Resources Technology:;2021:;volume( 143 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record