Show simple item record

contributor authorXie, Jiayin
contributor authorBi, Chenghao
contributor authorCappelleri, David J.
contributor authorChakraborty, Nilanjan
date accessioned2022-02-05T21:40:26Z
date available2022-02-05T21:40:26Z
date copyright4/9/2021 12:00:00 AM
date issued2021
identifier issn1942-4302
identifier otherjmr_13_4_041005.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4276109
description abstractThe design of robots at the small scale is a trial-and-error based process, which is costly and time-consuming. There are few dynamic simulation tools available to accurately predict the motion or performance of untethered microrobots as they move over a substrate. At smaller length scales, the influence of adhesion and friction, which scales with surface area, becomes more pronounced. Thus, rigid body dynamic simulators, which implicitly assume that contact between two bodies can be modeled as point contact, are not suitable. In this paper, we present techniques for simulating the motion of microrobots where there can be intermittent and non-point contact between the robot and the substrate. We use these techniques to study the motion of tumbling microrobots of different shapes and select shapes that are optimal for improving locomotion performance. Simulation results are verified using experimental data on linear velocity, maximum climbable incline angle, and microrobot trajectory. Microrobots with improved geometry were fabricated, but limitations in the fabrication process resulted in unexpected manufacturing errors and material/size scale adjustments. The developed simulation model can incorporate these limitations and emulate their effect on the microrobot’s motion, reproducing the experimental behavior of the tumbling microrobots, further showcasing the effectiveness of having such a dynamic model.
publisherThe American Society of Mechanical Engineers (ASME)
titleDynamic Simulation-Guided Design of Tumbling Magnetic Microrobots
typeJournal Paper
journal volume13
journal issue4
journal titleJournal of Mechanisms and Robotics
identifier doi10.1115/1.4050098
journal fristpage041005-1
journal lastpage041005-16
page16
treeJournal of Mechanisms and Robotics:;2021:;volume( 013 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record