| contributor author | Tian, Yingzhong | |
| contributor author | Zhao, Yinjun | |
| contributor author | Li, Long | |
| contributor author | Yuan, Guangjie | |
| contributor author | Xi, Fengfeng | |
| date accessioned | 2022-02-05T21:38:59Z | |
| date available | 2022-02-05T21:38:59Z | |
| date copyright | 1/19/2021 12:00:00 AM | |
| date issued | 2021 | |
| identifier issn | 1942-4302 | |
| identifier other | jmr_13_2_021004.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4276058 | |
| description abstract | This article presents a novel design of a multisegment shape morphing mechanism that combines a lockable reconfigurable variable geometry truss manipulator (VGTM) with an active parallel compliant mechanism. The structure of the VGTM is in a parallel-serial structure, and its hyper-redundant degree-of-freedom (DOF) can be fully controlled by using two active flexible panels and some lockable joints. This mechanism is suitable for aerospace applications that require light and compact structure with high load-carrying ability as well as achieve multiple DOFs for large-scale shape deformation. To make shape morphing process simple and efficient, the mobility and topological configuration of the mechanism are analyzed first. Then, a control strategy combining the approximate motion mode and the exact motion mode is proposed. The kinematic models for different motion modes are established and solved analytically. It has been found that, under the exact motion mode, two approaches could be realized for the pose control under external loads for each segment. The one with the shorter moving path is selected in this article. Finally, a prototype was constructed to demonstrate the feasibility of this structure and to verify the proposed kinematic model. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Design and Analysis of a Multisegment Shape Morphing Mechanism | |
| type | Journal Paper | |
| journal volume | 13 | |
| journal issue | 2 | |
| journal title | Journal of Mechanisms and Robotics | |
| identifier doi | 10.1115/1.4049443 | |
| journal fristpage | 021004-1 | |
| journal lastpage | 021004-12 | |
| page | 12 | |
| tree | Journal of Mechanisms and Robotics:;2021:;volume( 013 ):;issue: 002 | |
| contenttype | Fulltext | |