Show simple item record

contributor authorBunting, Gregory
contributor authorMiller, Scott T.
date accessioned2022-02-04T22:52:24Z
date available2022-02-04T22:52:24Z
date copyright2/1/2020 12:00:00 AM
date issued2020
identifier issn1048-9002
identifier othervib_142_1_011012.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4275607
description abstractWe expand the second-order fluid–structure coupling scheme of Farhat et al. (1998, “Load and Motion Transfer Algorithms for 19 Fluid/Structure Interaction Problems With Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal Discretization and Application to Aeroelasticity,” Comput. Methods Appl. Mech. Eng., 157(1–2), pp. 95–114; 2006, “Provably Second-Order Time-Accurate Loosely-Coupled Solution Algorithms for Transient Nonlinear Computational Aeroelasticity,” Comput. Methods Appl. Mech. Eng., 195(17), pp. 1973–2001) to structural acoustics. The staggered structural acoustics solution method is demonstrated to be second-order accurate in time, and numerical results are compared to a monolithically coupled system. The partitioned coupling method is implemented in the Sierra Mechanics software suite, allowing for the loose coupling of time domain acoustics in sierra/sd to structural dynamics (sierra/sd) or solid mechanics (sierra/sm). The coupling is demonstrated to work for nonconforming meshes. Results are verified for a one-dimensional piston, and the staggered and monolithic results are compared to an exact solution. Huang, H. (1969, “Transient Interaction of Plane Acoustic Waves With a Spherical Elastic Shell,” J. Acoust. Soc. Am., 45(3), pp. 661–670) sphere scattering problem with a spherically spreading acoustic load demonstrates parallel capability on a complex problem. Our numerical results compare well for a bronze plate submerged in water and sinusoidally excited (Fahnline and Shepherd, 2017, “Transient Finite Element/Equivalent Sources Using Direct Coupling and Treating the Acoustic Coupling Matrix as Sparse,” J. Acoust. Soc. Am., 142(2), pp. 1011–1024).
publisherThe American Society of Mechanical Engineers (ASME)
titlePartitioned Coupling for Structural Acoustics
typeJournal Paper
journal volume142
journal issue1
journal titleJournal of Vibration and Acoustics
identifier doi10.1115/1.4045215
journal fristpage011012-1
journal lastpage011012-6
page6
treeJournal of Vibration and Acoustics:;2020:;volume( 142 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record