Show simple item record

contributor authorLiu, Shun
contributor authorGuo, Tiankui
contributor authorRui, Zhenhua
contributor authorLing, Kegang
date accessioned2022-02-04T22:09:39Z
date available2022-02-04T22:09:39Z
date copyright6/12/2020 12:00:00 AM
date issued2020
identifier issn0195-0738
identifier otherjert_142_12_123002.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274999
description abstractTemporary plugging fracturing is an effective way to enhance the fracture complexity and increase the stimulated reservoir volume (SRV) of unconventional reservoirs. The performance of temporary plugging agents (TPA) directly affects the success rate of temporary plugging. Currently, laboratory evaluation of the plugging effects of the TPA is rarely reported, and there are no industrial standards on laboratory evaluation of TPA plugging. In this study, two new experimental methods were used to evaluate a novel particulate TPA. The plugging performance of the TPA to the core end face and the propped fractures was measured through displacement experiments of cores, and the applicability of its basic performance to the temporary plugging fracturing was verified. Furthermore, the large-scale true triaxial simulation experiment of temporary plugging fracturing was carried out to confirm the influence mechanism of different factors on fracture propagation during temporary plugging. Finally, the influence rule of different types of combinations of TPA and placement patterns on the plugging was obtained based on laboratory evaluation of the conductivity. The results show that the novel TPA causes effective temporary plugging on the core end face and the propped fractures and has the strong plugging performance, and the TPA solubility in the carrying fluids decreases with the increase in the TPA concentration. The basic performance of the TPA meets the requirements of temporary plugging fracturing. If the proppants and 20% fibers are placed within the fracture in the mixed pattern, the fracture is initiated along the direction of the horizontal maximum principal stress. The preset fracture reduces the fracture initiation pressure. The fracture complexity is closely related to the placement pattern of TPA and proppants. If the preset fractures are filled by the uniform mixture or the plug of the 20/40 mesh or 20/80 mesh particulate TPA (4%), fibers (1%), and proppants, the fracture initiation pressure significantly increases, and the complex fractures are formed after fracturing. Effective plugging cannot be formed only by mixing the fibers with the proppants, and the uniform mixture of the proppants and 4% particulate TPA and the 6% particulate TPA at the front end of the fracture form a temporary plugging belt, achieving effective plugging. The fibers improve the conductivity under the low closure stress, and it has a certain effect of temporary plugging under the closure stress above 30 MPa. The research results provide the design consideration for creating the complex fracture by temporary plugging.
publisherThe American Society of Mechanical Engineers (ASME)
titlePerformance Evaluation of Degradable Temporary Plugging Agent in Laboratory Experiment
typeJournal Paper
journal volume142
journal issue12
journal titleJournal of Energy Resources Technology
identifier doi10.1115/1.4047311
journal fristpage0123002-1
journal lastpage0123002-11
page11
treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record