Show simple item record

contributor authorAlbiez, Holger
contributor authorGramespacher, Christoph
contributor authorStripf, Matthias
contributor authorBauer, Hans-Jörg
date accessioned2022-02-04T14:44:17Z
date available2022-02-04T14:44:17Z
date copyright2020/02/27/
date issued2020
identifier issn0022-1481
identifier otherht_142_04_042105.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274268
description abstractA new experimental dataset focusing on the influence of high freestream turbulence and large pressure gradients on boundary layer transition is presented. The experiments are conducted in a new wind tunnel equipped with a flat plate test section and a new kind of turbulence generator, which allows for a continuous variation of turbulence intensity. The flat plate is mounted midway between contoured top and bottom walls. Two different wall contours can be implemented to create pressure distributions on the flat plate that are typical for the pressure and suction side of high pressure turbine cascades. A large variation of Reynolds number from 3.0 × 105 to 7.5 × 105 and inlet turbulence intensity between 1.1% and 8% is realized, resulting in more than 100 test cases. Measurements comprise highly resolved heat transfer, near-wall intermittency and freestream Reynolds stress distributions. Near-wall intermittency is measured using a traversable hotfilm sensor while freestream Reynolds stresses are measured simultaneously at the same position with a revolvable X-wire probe. Additionally, turbulent length scales are analyzed using the X-wire signal along the flat plate. Results show that heat transfer and near-wall intermittency distributions are in good agreement and that heat transfer at high turbulence levels increases prior to the formation of first turbulence spots. Transition onset is found to be influenced by the turbulence Reynolds number, i.e., turbulent length scales. At constant inlet turbulence intensity, transition onset moves upstream, when the turbulent Reynolds number is decreased.
publisherThe American Society of Mechanical Engineers (ASME)
titleHigh-Resolution Measurements of Heat Transfer, Near-Wall Intermittency, and Reynolds-Stresses Along a Flat Plate Boundary Layer Undergoing Bypass Transition
typeJournal Paper
journal volume142
journal issue4
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4045756
page42105
treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record