Show simple item record

contributor authorZhou, Minhao
contributor authorWerbner, Benjamin
contributor authorO'Connell, Grace
date accessioned2022-02-04T14:29:21Z
date available2022-02-04T14:29:21Z
date copyright2020/02/28/
date issued2020
identifier issn0148-0731
identifier otherbio_142_03_030802.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273764
description abstractIntervertebral disc research has sought to develop a deeper understanding of spine biomechanics, the complex relationship between disc health and back pain, and the mechanisms of spinal injury and repair. To do so, many researchers have focused on characterizing tissue-level properties of the disc, where the roles of tissue subcomponents can be more systematically investigated. Unfortunately, experimental challenges often limit the ability to measure important disc tissue- and subtissue-level behaviors, including fiber–matrix interactions, transient nutrient and electrolyte transport, and damage propagation. Numerous theoretical and numerical modeling frameworks have been introduced to explain, complement, guide, and optimize experimental research efforts. The synergy of experimental and computational work has significantly advanced the field, and these two aspects have continued to develop independently and jointly. Meanwhile, the relationship between experimental and computational work has become increasingly complex and interdependent. This has made it difficult to interpret and compare results between experimental and computational studies, as well as between solely computational studies. This paper seeks to explore issues of model translatability, robustness, and efficient study design, and to propose and motivate potential future directions for experimental, computational, and combined tissue-level investigations of the intervertebral disc.
publisherThe American Society of Mechanical Engineers (ASME)
titleHistorical Review of Combined Experimental and Computational Approaches for Investigating Annulus Fibrosus Mechanics
typeJournal Paper
journal volume142
journal issue3
journal titleJournal of Biomechanical Engineering
identifier doi10.1115/1.4046186
page30802
treeJournal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record