Show simple item record

contributor authorParbat, Sarwesh
contributor authorMin, Zheng
contributor authorYang, Li
contributor authorChyu, Minking
date accessioned2022-02-04T14:12:01Z
date available2022-02-04T14:12:01Z
date copyright2020/05/12/
date issued2020
identifier issn0889-504X
identifier otherturbo_142_6_061004.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273166
description abstractIn the present paper, two lattice geometries suitable for near surface and double wall cooling were developed and tested. The first type of unit cell consisted of six ligaments of 0.5 mm diameter joined at a common vertex near the middle. The second type of unit cell was derived from the first type by adding four mutually perpendicular ligaments in the middle plane. Two lattice configurations, referred to as L1 and L2, respectively, were obtained by repeating the corresponding unit cell in streamwise and spanwise directions in an inline fashion. Test coupons consisting of these lattice geometries embedded inside rectangular cooling channel with dimensions of 2.54 mm height, 38.07 mm width, and 38.1 mm in length were fabricated using Inconel 718 powder and selective laser sintering (SLS) process. The heat transfer and pressure drop performance was then evaluated using steady-state tests with constant wall temperature boundary condition and for channel Reynolds number ranging from 2800 to 15,000. The lattices depicted a higher heat transfer compared with a smooth channel and both the heat transfer and pressure drop increased with a decrease in the porosity from L1 to L2. Steady-state conjugate numerical results revealed formation of prominent vortical structures in the inter-unit cell spaces, which diverted the flow toward the top end wall and created an asymmetric heat transfer between the two end walls. In conclusion, these lattice structures provided an augmented heat transfer while favorably redistributing the coolant within channel.
publisherThe American Society of Mechanical Engineers (ASME)
titleExperimental and Numerical Analysis of Additively Manufactured Inconel 718 Coupons With Lattice Structure
typeJournal Paper
journal volume142
journal issue6
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4046527
page61004
treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record