YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Water Resources Planning and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Lagrangian Method to Model Advection-Dispersion-Reaction Transport in Drinking Water Pipe Networks

    Source: Journal of Water Resources Planning and Management:;2021:;Volume ( 147 ):;issue: 009::page 04021057-1
    Author:
    Feng Shang
    ,
    Hyoungmin Woo
    ,
    Jonathan B. Burkhardt
    ,
    Regan Murray
    DOI: 10.1061/(ASCE)WR.1943-5452.0001421
    Publisher: ASCE
    Abstract: A Lagrangian method to simulate the advection, dispersion, and reaction of a single chemical, biological, or physical constituent within drinking water pipe networks is presented. This Lagrangian approach removes the need for fixed computational grids typically required in Eulerian and Eulerian-Lagrangian methods and allows for nonuniform computational segments. This makes the method fully compatible with the advection-reaction water quality engine currently used in EPANET. An operator splitting approach is used, in which the advection-reaction process is modeled before the dispersion process for each water quality step. The dispersion equation is discretized using a segment-centered finite-difference scheme, and flux continuity boundary conditions are applied at network junctions. A staged approach is implemented to solve the dispersion equation for interconnected pipe networks. First, a linear relationship between the boundary and internal concentrations is established for every pipe. Second, a symmetric and positive definite linear system of equations is constructed to calculate the concentrations at network junctions. Last, pipe internal concentrations are updated based on the junction concentrations. The solution generates exact results when the analytical solutions are available and leads to more accurate water quality simulations than advection-reaction-only water quality models, especially in the areas where dispersion dominates advection.
    • Download: (1.023Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Lagrangian Method to Model Advection-Dispersion-Reaction Transport in Drinking Water Pipe Networks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272853
    Collections
    • Journal of Water Resources Planning and Management

    Show full item record

    contributor authorFeng Shang
    contributor authorHyoungmin Woo
    contributor authorJonathan B. Burkhardt
    contributor authorRegan Murray
    date accessioned2022-02-01T22:13:05Z
    date available2022-02-01T22:13:05Z
    date issued9/1/2021
    identifier other%28ASCE%29WR.1943-5452.0001421.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272853
    description abstractA Lagrangian method to simulate the advection, dispersion, and reaction of a single chemical, biological, or physical constituent within drinking water pipe networks is presented. This Lagrangian approach removes the need for fixed computational grids typically required in Eulerian and Eulerian-Lagrangian methods and allows for nonuniform computational segments. This makes the method fully compatible with the advection-reaction water quality engine currently used in EPANET. An operator splitting approach is used, in which the advection-reaction process is modeled before the dispersion process for each water quality step. The dispersion equation is discretized using a segment-centered finite-difference scheme, and flux continuity boundary conditions are applied at network junctions. A staged approach is implemented to solve the dispersion equation for interconnected pipe networks. First, a linear relationship between the boundary and internal concentrations is established for every pipe. Second, a symmetric and positive definite linear system of equations is constructed to calculate the concentrations at network junctions. Last, pipe internal concentrations are updated based on the junction concentrations. The solution generates exact results when the analytical solutions are available and leads to more accurate water quality simulations than advection-reaction-only water quality models, especially in the areas where dispersion dominates advection.
    publisherASCE
    titleLagrangian Method to Model Advection-Dispersion-Reaction Transport in Drinking Water Pipe Networks
    typeJournal Paper
    journal volume147
    journal issue9
    journal titleJournal of Water Resources Planning and Management
    identifier doi10.1061/(ASCE)WR.1943-5452.0001421
    journal fristpage04021057-1
    journal lastpage04021057-12
    page12
    treeJournal of Water Resources Planning and Management:;2021:;Volume ( 147 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian