YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Surveying Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Accuracy Assessment of Sea Surface Height Measurement Obtained from Shipborne PPP Positioning

    Source: Journal of Surveying Engineering:;2021:;Volume ( 147 ):;issue: 004::page 04021022-1
    Author:
    Hsuan-Chang Shih
    ,
    Ta-Kang Yeh
    ,
    Yujun Du
    ,
    Kaifei He
    DOI: 10.1061/(ASCE)SU.1943-5428.0000374
    Publisher: ASCE
    Abstract: Sea surface height (SSH), a measurement widely used in marine science, can be used to compute the marine gravity field while providing underlying information on the ocean current, tide, and geoid. A traditional SSH measurement relies on tide stations and satellite altimetry. Shipborne SSH measurements not only alleviate the influence of poor nearshore waveforms on satellite altimetry reliability but also enable large-scale surveys. Moreover, it is favored by the high sampling rate and superior spatial resolution. Precise point positioning (PPP) allows operations independent of the land-based station, facilitating flexibility and efficiency. Accordingly, PPP is used to determine the ellipsoid height based on shipborne GPS data. The PPP computations are performed using the Canadian Spatial Reference System (CSRS)–PPP, GrafNav, and Bernese. The results of the CSRS-PPP have better accuracy and are easy to use. The corrections of the height difference between a GPS antenna and sea surface, earth tide, ocean tide, and filtering are tested to obtain an accurate SSH measurement. The corrected SSH accuracy is improved from 206.2 to 22.9 cm based on a crossover analysis. Through the adjustment of the crossover differences, the result shows an accuracy of 7.5 cm. The comparison with the DTU18 mean sea surface (MSS) model shows that the standard deviation of the differences is 21.9 and 11.9 cm for the corrected SSH before and after the adjustment, respectively. The adjusted SSH shows an obvious improvement of 62.2% and 32.8% in the standard deviation of the crossover differences and the differences with the DTU18 MSS model.
    • Download: (2.392Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Accuracy Assessment of Sea Surface Height Measurement Obtained from Shipborne PPP Positioning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272822
    Collections
    • Journal of Surveying Engineering

    Show full item record

    contributor authorHsuan-Chang Shih
    contributor authorTa-Kang Yeh
    contributor authorYujun Du
    contributor authorKaifei He
    date accessioned2022-02-01T22:12:06Z
    date available2022-02-01T22:12:06Z
    date issued11/1/2021
    identifier other%28ASCE%29SU.1943-5428.0000374.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272822
    description abstractSea surface height (SSH), a measurement widely used in marine science, can be used to compute the marine gravity field while providing underlying information on the ocean current, tide, and geoid. A traditional SSH measurement relies on tide stations and satellite altimetry. Shipborne SSH measurements not only alleviate the influence of poor nearshore waveforms on satellite altimetry reliability but also enable large-scale surveys. Moreover, it is favored by the high sampling rate and superior spatial resolution. Precise point positioning (PPP) allows operations independent of the land-based station, facilitating flexibility and efficiency. Accordingly, PPP is used to determine the ellipsoid height based on shipborne GPS data. The PPP computations are performed using the Canadian Spatial Reference System (CSRS)–PPP, GrafNav, and Bernese. The results of the CSRS-PPP have better accuracy and are easy to use. The corrections of the height difference between a GPS antenna and sea surface, earth tide, ocean tide, and filtering are tested to obtain an accurate SSH measurement. The corrected SSH accuracy is improved from 206.2 to 22.9 cm based on a crossover analysis. Through the adjustment of the crossover differences, the result shows an accuracy of 7.5 cm. The comparison with the DTU18 mean sea surface (MSS) model shows that the standard deviation of the differences is 21.9 and 11.9 cm for the corrected SSH before and after the adjustment, respectively. The adjusted SSH shows an obvious improvement of 62.2% and 32.8% in the standard deviation of the crossover differences and the differences with the DTU18 MSS model.
    publisherASCE
    titleAccuracy Assessment of Sea Surface Height Measurement Obtained from Shipborne PPP Positioning
    typeJournal Paper
    journal volume147
    journal issue4
    journal titleJournal of Surveying Engineering
    identifier doi10.1061/(ASCE)SU.1943-5428.0000374
    journal fristpage04021022-1
    journal lastpage04021022-10
    page10
    treeJournal of Surveying Engineering:;2021:;Volume ( 147 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian