YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Investigations on Seismic Performance of CFST Frame with External Diaphragm Joint

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 011::page 04021182-1
    Author:
    Bin Rong
    ,
    Hongtao Li
    ,
    Ruoyu Zhang
    DOI: 10.1061/(ASCE)ST.1943-541X.0003169
    Publisher: ASCE
    Abstract: This paper aims to investigate the seismic performance of a steel frame with an external diaphragm joint between a concrete-filled steel tube (CFST) column and H-shaped steel beam through experiments and finite-element (FE) analysis. A quasistatic test was conducted on five steel frame specimens. The parameters involved in the test were joint stiffness, beam-to-column stiffness ratio and concrete strength. Based on the experimental results, failure mode, lateral load versus displacement hysteretic curve, skeleton curve, strength and stiffness degradation effects, ductility, and energy dissipation capacity were analyzed. The experimental results show the hysteretic curves have a plump shuttle shape; the strength degradation effect and stiffness degradation effect are relatively feeble; and the ductility and energy dissipation capacity are excellent. Therefore, the tested specimens have good seismic performance. Also, this suggests that larger joint stiffness brings about superior seismic performance; a stronger column leads to higher bearing capacity as well as inferior ductility and energy dissipation capacity; and a CFST frame performs better than a hollow steel tube column frame under cyclic loads. On the basis of the experimental results, the ABAQUS software version 6.14 was adopted to establish the FE models. The applicability and accuracy of FE simulation were first verified by experimental results. Then, quantitative parametric analysis was carried out to study the effects of different parameters on seismic performance of the CFST frame with an external diaphragm joint.
    • Download: (3.033Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Investigations on Seismic Performance of CFST Frame with External Diaphragm Joint

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272805
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorBin Rong
    contributor authorHongtao Li
    contributor authorRuoyu Zhang
    date accessioned2022-02-01T22:11:41Z
    date available2022-02-01T22:11:41Z
    date issued11/1/2021
    identifier other%28ASCE%29ST.1943-541X.0003169.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272805
    description abstractThis paper aims to investigate the seismic performance of a steel frame with an external diaphragm joint between a concrete-filled steel tube (CFST) column and H-shaped steel beam through experiments and finite-element (FE) analysis. A quasistatic test was conducted on five steel frame specimens. The parameters involved in the test were joint stiffness, beam-to-column stiffness ratio and concrete strength. Based on the experimental results, failure mode, lateral load versus displacement hysteretic curve, skeleton curve, strength and stiffness degradation effects, ductility, and energy dissipation capacity were analyzed. The experimental results show the hysteretic curves have a plump shuttle shape; the strength degradation effect and stiffness degradation effect are relatively feeble; and the ductility and energy dissipation capacity are excellent. Therefore, the tested specimens have good seismic performance. Also, this suggests that larger joint stiffness brings about superior seismic performance; a stronger column leads to higher bearing capacity as well as inferior ductility and energy dissipation capacity; and a CFST frame performs better than a hollow steel tube column frame under cyclic loads. On the basis of the experimental results, the ABAQUS software version 6.14 was adopted to establish the FE models. The applicability and accuracy of FE simulation were first verified by experimental results. Then, quantitative parametric analysis was carried out to study the effects of different parameters on seismic performance of the CFST frame with an external diaphragm joint.
    publisherASCE
    titleExperimental and Numerical Investigations on Seismic Performance of CFST Frame with External Diaphragm Joint
    typeJournal Paper
    journal volume147
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003169
    journal fristpage04021182-1
    journal lastpage04021182-11
    page11
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian