YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear Capacity Model with Variable Orientation of Concrete Stress Field for RC Beams Strengthened by FRP with Different Inclinations

    Source: Journal of Composites for Construction:;2021:;Volume ( 025 ):;issue: 004::page 04021037-1
    Author:
    Piero Colajanni
    ,
    Venanzio Guarino
    ,
    Salvatore Pagnotta
    DOI: 10.1061/(ASCE)CC.1943-5614.0001145
    Publisher: ASCE
    Abstract: A design-oriented analytical model able to evaluate the shear capacity of reinforced concrete (RC) beams strengthened with fiber-reinforced polymer (FRP) sheets or strips oriented in any direction is proposed. The formulation of the model is based on the variable-inclination stress-field approach, aiming to extend the provisions of current European standards to beams strengthened in shear using FRP. The main novelty of the model lies in taking into account the possible different inclination of steel stirrup and FRP reinforcement in determining the orientation of a compressed concrete stress field, and in shear strength evaluation, overcoming the approximation of the known models with variable inclination of the concrete strut in the assessment of concrete strut capacity, in which the value that has to be assigned to the shear reinforcement direction is not defined, that is, either that of the steel stirrup or the external FRP reinforcement. The proposed model is able to take into account different steel stirrup and external FRP shear reinforcement orientation in assessing the reduction of the steel transverse reinforcement efficiency due to the brittle failure of the composite and also as a function of the effective composite to yielding steel strain ratio. Moreover, regarding the former aspect, a simplified approximate procedure is proposed for solving the drawbacks related to verifying compressed concrete strength in the suggested method of application of code models for RC beams strengthened by means of FRP reinforcement inclined with a different slope from the pre-existing steel stirrup. Complete and U-shaped schemes are considered. The effectiveness of the proposed model adopting different relations for assessment of the FRP effective strains proposed in the literature is investigated, differentiating them by shape of the cross section and by the possible presence of fiber-anchoring devices. The shear capacity predicted by the model and those obtained using international codes and literature models are compared against the experimental results, proving that the proposed model is the most effective in predicting the shear strength when considering specimens having steel stirrups and FRP shear reinforcement arranged with different inclinations.
    • Download: (1.109Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear Capacity Model with Variable Orientation of Concrete Stress Field for RC Beams Strengthened by FRP with Different Inclinations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272804
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorPiero Colajanni
    contributor authorVenanzio Guarino
    contributor authorSalvatore Pagnotta
    date accessioned2022-02-01T22:11:39Z
    date available2022-02-01T22:11:39Z
    date issued8/1/2021
    identifier other%28ASCE%29CC.1943-5614.0001145.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272804
    description abstractA design-oriented analytical model able to evaluate the shear capacity of reinforced concrete (RC) beams strengthened with fiber-reinforced polymer (FRP) sheets or strips oriented in any direction is proposed. The formulation of the model is based on the variable-inclination stress-field approach, aiming to extend the provisions of current European standards to beams strengthened in shear using FRP. The main novelty of the model lies in taking into account the possible different inclination of steel stirrup and FRP reinforcement in determining the orientation of a compressed concrete stress field, and in shear strength evaluation, overcoming the approximation of the known models with variable inclination of the concrete strut in the assessment of concrete strut capacity, in which the value that has to be assigned to the shear reinforcement direction is not defined, that is, either that of the steel stirrup or the external FRP reinforcement. The proposed model is able to take into account different steel stirrup and external FRP shear reinforcement orientation in assessing the reduction of the steel transverse reinforcement efficiency due to the brittle failure of the composite and also as a function of the effective composite to yielding steel strain ratio. Moreover, regarding the former aspect, a simplified approximate procedure is proposed for solving the drawbacks related to verifying compressed concrete strength in the suggested method of application of code models for RC beams strengthened by means of FRP reinforcement inclined with a different slope from the pre-existing steel stirrup. Complete and U-shaped schemes are considered. The effectiveness of the proposed model adopting different relations for assessment of the FRP effective strains proposed in the literature is investigated, differentiating them by shape of the cross section and by the possible presence of fiber-anchoring devices. The shear capacity predicted by the model and those obtained using international codes and literature models are compared against the experimental results, proving that the proposed model is the most effective in predicting the shear strength when considering specimens having steel stirrups and FRP shear reinforcement arranged with different inclinations.
    publisherASCE
    titleShear Capacity Model with Variable Orientation of Concrete Stress Field for RC Beams Strengthened by FRP with Different Inclinations
    typeJournal Paper
    journal volume25
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001145
    journal fristpage04021037-1
    journal lastpage04021037-16
    page16
    treeJournal of Composites for Construction:;2021:;Volume ( 025 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian