YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Buffeting and Self-Excited Load Measurements to Evaluate Ice and Dry Galloping of Yawed Power Transmission Lines

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 011::page 04021175-1
    Author:
    Mohammad Jafari
    ,
    Partha P. Sarkar
    DOI: 10.1061/(ASCE)ST.1943-541X.0003154
    Publisher: ASCE
    Abstract: Dry and ice galloping of power transmission lines (conductors) that occur at moderate to large wind speeds cause large-amplitude motion in these long-suspended cables. This phenomenon can cause catastrophic damages such as flashover, wire burning, tripping, transmission line tower collapse, accident, interphase short circuit, and structural or fatigue failure of transmission towers or conductors. Wind-induced cable vibration, which has been extensively studied, can be classified based on its sources, such as rain-wind-induced vibration (RWIV), vortex-induced vibration (VIV), wake galloping, and dry/ice galloping. This study primarily focuses on the predictions of time-domain response and onset of dry- and ice-conductor galloping by measuring the self-excited and buffeting load parameters of the bare conductors and conductors with ice formation in normal and yawed wind. In this regard, a series of static and dynamic wind tunnel experiments were performed to fundamentally study the conductor vibration in dry and ice conditions. Surface pressure distribution and aerodynamic forces were measured for stationary section models of nonyawed and yawed dry conductors in a smooth flow. Additionally, the dynamic response of dry and iced conductors using a one-degree-of-freedom system was recorded by employing a free vibration setup to extract self-excited load parameters. Buffeting load parameters were measured by generating a sinusoidal-oscillating wind upstream of dry and iced conductors for different yaw angles. The experiments resulted in the identification of the Strouhal number (St), aerodynamic load coefficients (CD and CL), buffeting indicial derivative functions, aerodynamic stiffness, and aerodynamic damping of a conductor for yaw angles (β) ranging from 0° to 45°. Dynamic tests led to the proposing of several empirical equations to determine the critical reduced velocity (RVcr) or critical wind speed for dry and ice galloping of conductors at a given Scruton number (Sch) and yaw angle. Finally, a procedure was proposed to calculate the least damping required to suppress the conductor galloping under dry or iced conditions up to the design wind speed. The wind load parameters identified in this study can be used to numerically simulate the dynamic load and response in the time domain of dry and iced conductors in turbulent wind.
    • Download: (4.069Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Buffeting and Self-Excited Load Measurements to Evaluate Ice and Dry Galloping of Yawed Power Transmission Lines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272796
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorMohammad Jafari
    contributor authorPartha P. Sarkar
    date accessioned2022-02-01T22:11:25Z
    date available2022-02-01T22:11:25Z
    date issued11/1/2021
    identifier other%28ASCE%29ST.1943-541X.0003154.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272796
    description abstractDry and ice galloping of power transmission lines (conductors) that occur at moderate to large wind speeds cause large-amplitude motion in these long-suspended cables. This phenomenon can cause catastrophic damages such as flashover, wire burning, tripping, transmission line tower collapse, accident, interphase short circuit, and structural or fatigue failure of transmission towers or conductors. Wind-induced cable vibration, which has been extensively studied, can be classified based on its sources, such as rain-wind-induced vibration (RWIV), vortex-induced vibration (VIV), wake galloping, and dry/ice galloping. This study primarily focuses on the predictions of time-domain response and onset of dry- and ice-conductor galloping by measuring the self-excited and buffeting load parameters of the bare conductors and conductors with ice formation in normal and yawed wind. In this regard, a series of static and dynamic wind tunnel experiments were performed to fundamentally study the conductor vibration in dry and ice conditions. Surface pressure distribution and aerodynamic forces were measured for stationary section models of nonyawed and yawed dry conductors in a smooth flow. Additionally, the dynamic response of dry and iced conductors using a one-degree-of-freedom system was recorded by employing a free vibration setup to extract self-excited load parameters. Buffeting load parameters were measured by generating a sinusoidal-oscillating wind upstream of dry and iced conductors for different yaw angles. The experiments resulted in the identification of the Strouhal number (St), aerodynamic load coefficients (CD and CL), buffeting indicial derivative functions, aerodynamic stiffness, and aerodynamic damping of a conductor for yaw angles (β) ranging from 0° to 45°. Dynamic tests led to the proposing of several empirical equations to determine the critical reduced velocity (RVcr) or critical wind speed for dry and ice galloping of conductors at a given Scruton number (Sch) and yaw angle. Finally, a procedure was proposed to calculate the least damping required to suppress the conductor galloping under dry or iced conditions up to the design wind speed. The wind load parameters identified in this study can be used to numerically simulate the dynamic load and response in the time domain of dry and iced conductors in turbulent wind.
    publisherASCE
    titleBuffeting and Self-Excited Load Measurements to Evaluate Ice and Dry Galloping of Yawed Power Transmission Lines
    typeJournal Paper
    journal volume147
    journal issue11
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003154
    journal fristpage04021175-1
    journal lastpage04021175-14
    page14
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian