YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aesthetics and Torsional Rigidity Improvements of a Triple-Cable Suspension Bridge by Uniform Distribution of Dead Loads to Three Cables in the Transverse Direction

    Source: Journal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 011::page 04021083-1
    Author:
    Wen-ming Zhang
    ,
    Zi-hang Liu
    ,
    Zhao Liu
    DOI: 10.1061/(ASCE)BE.1943-5592.0001790
    Publisher: ASCE
    Abstract: Suspension bridges with three cable planes provide an excellent solution to the suspension bridges’ downwarp problem with ultrawide decks, which implies their enormous demand and popularization prospect in the engineering scenarios. In this paper, a method for uniform allocation of dead load in the transverse direction to three cables of the suspension bridge with three cable planes (SB-3CP), which transforms the spatial stress mode into a plane model to simplify the calculation, is proposed. By altering the cross-sectional area of each hanger, the axial forces of the three hangers in the same cross section of the SB-3CP are equal. Therefore, the cross-sectional area and shape of the three cables are equal, improving the suspension bridge outlook in both the cross-sectional and facade views of the suspension bridge. Meanwhile, under the uniform allocation of the dead load, the side main cable bears a higher share of the dead load, which is conducive to improving the entire bridge’s torsional rigidity. In this study, conditions for compatibility of deformation and energy conservation are utilized to derive the relationship between the axial rigidity of the three hangers in the same cross sections. The effects of axial rigidity of hangers, flexural rigidity of the deck in the transverse direction, and length between the hanging points on the difference in the axial rigidities of the three hangers are analyzed and discussed in detail. Finally, an SB-3CP with a main span of 2,320 m and a width of 75 m was taken as an example. The cross-sectional areas of each hanger of the bridge were calculated using the proposed method. Then, its accuracy was validated through the finite-element analysis. This method’s design effect was verified by comparing the differences in the main cable diameter and torsional rigidity between the SB-3CP with uniform and nonuniform dead load distributions.
    • Download: (793.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aesthetics and Torsional Rigidity Improvements of a Triple-Cable Suspension Bridge by Uniform Distribution of Dead Loads to Three Cables in the Transverse Direction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272771
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorWen-ming Zhang
    contributor authorZi-hang Liu
    contributor authorZhao Liu
    date accessioned2022-02-01T22:10:40Z
    date available2022-02-01T22:10:40Z
    date issued11/1/2021
    identifier other%28ASCE%29BE.1943-5592.0001790.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272771
    description abstractSuspension bridges with three cable planes provide an excellent solution to the suspension bridges’ downwarp problem with ultrawide decks, which implies their enormous demand and popularization prospect in the engineering scenarios. In this paper, a method for uniform allocation of dead load in the transverse direction to three cables of the suspension bridge with three cable planes (SB-3CP), which transforms the spatial stress mode into a plane model to simplify the calculation, is proposed. By altering the cross-sectional area of each hanger, the axial forces of the three hangers in the same cross section of the SB-3CP are equal. Therefore, the cross-sectional area and shape of the three cables are equal, improving the suspension bridge outlook in both the cross-sectional and facade views of the suspension bridge. Meanwhile, under the uniform allocation of the dead load, the side main cable bears a higher share of the dead load, which is conducive to improving the entire bridge’s torsional rigidity. In this study, conditions for compatibility of deformation and energy conservation are utilized to derive the relationship between the axial rigidity of the three hangers in the same cross sections. The effects of axial rigidity of hangers, flexural rigidity of the deck in the transverse direction, and length between the hanging points on the difference in the axial rigidities of the three hangers are analyzed and discussed in detail. Finally, an SB-3CP with a main span of 2,320 m and a width of 75 m was taken as an example. The cross-sectional areas of each hanger of the bridge were calculated using the proposed method. Then, its accuracy was validated through the finite-element analysis. This method’s design effect was verified by comparing the differences in the main cable diameter and torsional rigidity between the SB-3CP with uniform and nonuniform dead load distributions.
    publisherASCE
    titleAesthetics and Torsional Rigidity Improvements of a Triple-Cable Suspension Bridge by Uniform Distribution of Dead Loads to Three Cables in the Transverse Direction
    typeJournal Paper
    journal volume26
    journal issue11
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001790
    journal fristpage04021083-1
    journal lastpage04021083-10
    page10
    treeJournal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian