YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance of Steel Frames with Different Web Bolt Number and Arrangements in a Column-Loss Scenario

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 010::page 04021150-1
    Author:
    Shentong Lin
    ,
    Jinpeng Wang
    ,
    Huiyun Qiao
    ,
    Yu Chen
    ,
    Yang Zhou
    DOI: 10.1061/(ASCE)ST.1943-541X.0003119
    Publisher: ASCE
    Abstract: When a steel frame is subjected to an abnormal load, a sudden local failure due to the loss of a load carrying member may result in progressive collapse of the entire structure. In this study, experiments and numerical simulations were performed to investigate the anti-collapse performance of double half-span assemblies (a column connected with two half-span beams) with welded unreinforced flange–bolted web (WUF-B) connections in a column removal scenario. Three types of bolted webs—two bolts in one row, three bolts in one row, and four bolts in two rows—were considered. For the post-peak response, the connections exhibited a significant resistance recovery owing to the catenary action. The bolt-bearing areas on the beam web were prone to fracture owing to excessive compression, and the failure modes of the web varied significantly with the bolt arrangement. The test results demonstrate that increasing the number of bolt rows is a fairly effective approach for enhancing the anti-collapse performance of the WUF-B connections. Numerical models were used to further investigate the effects of the bolt arrangement on the anti-collapse performance of the WUF-B connections. The results indicate that the bolt arrangement can directly affect the response of the connections after the first peak load, especially in the catenary phase.
    • Download: (2.324Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance of Steel Frames with Different Web Bolt Number and Arrangements in a Column-Loss Scenario

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272763
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorShentong Lin
    contributor authorJinpeng Wang
    contributor authorHuiyun Qiao
    contributor authorYu Chen
    contributor authorYang Zhou
    date accessioned2022-02-01T22:10:25Z
    date available2022-02-01T22:10:25Z
    date issued10/1/2021
    identifier other%28ASCE%29ST.1943-541X.0003119.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272763
    description abstractWhen a steel frame is subjected to an abnormal load, a sudden local failure due to the loss of a load carrying member may result in progressive collapse of the entire structure. In this study, experiments and numerical simulations were performed to investigate the anti-collapse performance of double half-span assemblies (a column connected with two half-span beams) with welded unreinforced flange–bolted web (WUF-B) connections in a column removal scenario. Three types of bolted webs—two bolts in one row, three bolts in one row, and four bolts in two rows—were considered. For the post-peak response, the connections exhibited a significant resistance recovery owing to the catenary action. The bolt-bearing areas on the beam web were prone to fracture owing to excessive compression, and the failure modes of the web varied significantly with the bolt arrangement. The test results demonstrate that increasing the number of bolt rows is a fairly effective approach for enhancing the anti-collapse performance of the WUF-B connections. Numerical models were used to further investigate the effects of the bolt arrangement on the anti-collapse performance of the WUF-B connections. The results indicate that the bolt arrangement can directly affect the response of the connections after the first peak load, especially in the catenary phase.
    publisherASCE
    titlePerformance of Steel Frames with Different Web Bolt Number and Arrangements in a Column-Loss Scenario
    typeJournal Paper
    journal volume147
    journal issue10
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003119
    journal fristpage04021150-1
    journal lastpage04021150-18
    page18
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian