YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Incremental Dynamic Analysis–Based Procedure for the Development of Loading Protocols

    Source: Journal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 011::page 04021080-1
    Author:
    Jhordy Rodríguez
    ,
    Saif Aldabagh
    ,
    M. Shahria Alam
    DOI: 10.1061/(ASCE)BE.1943-5592.0001785
    Publisher: ASCE
    Abstract: Seismic assessment is of critical importance for structures in regions where earthquakes are prevalent. Such assessment in terms of determining the inelastic capacity of structures is often performed in laboratories of universities, government, and industry through quasi-static cyclic testing programs. In these programs, selecting an appropriate loading protocol is crucial for achieving an accurate assessment of inelastic capacity. Appropriate loading protocols need to be representative of the seismic demands to which a structural component may be subjected during seismic events. A standard loading protocol available in the literature may not necessarily yield a meaningful response. For the quasi-static cyclic test program, a loading protocol should be developed specifically for the site, structural component, or system. In this study, an incremental dynamic analysis–based approach is introduced to develop component-specific quasi-static cyclic loading protocols, which is illustrated for a single-column-reinforced concrete bridge bent in Vancouver, British Columbia. Here, different target displacement ductility demand levels, that is, 2, 4, and 8, and different sources of earthquakes, that is, crustal, intraplate, and subduction earthquakes, were considered. The number of inelastic cycles and cumulative ductility damage were the primary target demand parameters in the loading protocol development. Conventional loading protocols were found unrealistically more damaging than those proposed for crustal and intraplate earthquakes. The proposed loading protocols for subduction earthquakes were consistent with those developed by other researchers for the same but employed the classical constant ductility design approach to achieve the target displacement ductility levels.
    • Download: (1.373Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Incremental Dynamic Analysis–Based Procedure for the Development of Loading Protocols

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272748
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorJhordy Rodríguez
    contributor authorSaif Aldabagh
    contributor authorM. Shahria Alam
    date accessioned2022-02-01T22:10:01Z
    date available2022-02-01T22:10:01Z
    date issued11/1/2021
    identifier other%28ASCE%29BE.1943-5592.0001785.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272748
    description abstractSeismic assessment is of critical importance for structures in regions where earthquakes are prevalent. Such assessment in terms of determining the inelastic capacity of structures is often performed in laboratories of universities, government, and industry through quasi-static cyclic testing programs. In these programs, selecting an appropriate loading protocol is crucial for achieving an accurate assessment of inelastic capacity. Appropriate loading protocols need to be representative of the seismic demands to which a structural component may be subjected during seismic events. A standard loading protocol available in the literature may not necessarily yield a meaningful response. For the quasi-static cyclic test program, a loading protocol should be developed specifically for the site, structural component, or system. In this study, an incremental dynamic analysis–based approach is introduced to develop component-specific quasi-static cyclic loading protocols, which is illustrated for a single-column-reinforced concrete bridge bent in Vancouver, British Columbia. Here, different target displacement ductility demand levels, that is, 2, 4, and 8, and different sources of earthquakes, that is, crustal, intraplate, and subduction earthquakes, were considered. The number of inelastic cycles and cumulative ductility damage were the primary target demand parameters in the loading protocol development. Conventional loading protocols were found unrealistically more damaging than those proposed for crustal and intraplate earthquakes. The proposed loading protocols for subduction earthquakes were consistent with those developed by other researchers for the same but employed the classical constant ductility design approach to achieve the target displacement ductility levels.
    publisherASCE
    titleIncremental Dynamic Analysis–Based Procedure for the Development of Loading Protocols
    typeJournal Paper
    journal volume26
    journal issue11
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001785
    journal fristpage04021080-1
    journal lastpage04021080-14
    page14
    treeJournal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian