YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Strength Determination and Fracture Characteristics of Bolted Connections

    Source: Journal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 009::page 04021132-1
    Author:
    Huajie Wen
    ,
    Hussam Mahmoud
    DOI: 10.1061/(ASCE)ST.1943-541X.0003076
    Publisher: ASCE
    Abstract: Bolted connections are commonly used for attaching structural elements in various civil and mechanical engineering applications. Despite their popularity, various studies raised concerns over the adequacy of design provisions in capturing connection strength. Design provisions to accurately predict connection strength could be refined through experimental tests and/or the use of highly nonlinear analysis that can simulate stress redistribution and ductile fracture in the connections. Recently, an effective numerical method for accurately predicting ductile fracture of bolted connections under any stress state was proposed and validated. In this study, using the validated numerical prediction framework, a comprehensive study on typical bolted connections is conducted. Parameters relevant to connection behavior, including bolt spacing in the tensile and shear planes as well as the edge/end distances, are varied in the analysis. It is found that plastic bearing deformations facilitate shear fracture initiation, and significant uneven stress might occur along the shear failure path. Based on the findings, new design equations pertaining to bolted connection strength are proposed. The design equations not only indicate better correlation with the experimental data than current code equations but also reflect more accurately the actual failure mechanisms in the connections. The results can be useful for assessing in-service connections and achieving reliable yet economical structural design at a consistent safety level.
    • Download: (2.199Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Strength Determination and Fracture Characteristics of Bolted Connections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272723
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorHuajie Wen
    contributor authorHussam Mahmoud
    date accessioned2022-02-01T22:09:19Z
    date available2022-02-01T22:09:19Z
    date issued9/1/2021
    identifier other%28ASCE%29ST.1943-541X.0003076.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272723
    description abstractBolted connections are commonly used for attaching structural elements in various civil and mechanical engineering applications. Despite their popularity, various studies raised concerns over the adequacy of design provisions in capturing connection strength. Design provisions to accurately predict connection strength could be refined through experimental tests and/or the use of highly nonlinear analysis that can simulate stress redistribution and ductile fracture in the connections. Recently, an effective numerical method for accurately predicting ductile fracture of bolted connections under any stress state was proposed and validated. In this study, using the validated numerical prediction framework, a comprehensive study on typical bolted connections is conducted. Parameters relevant to connection behavior, including bolt spacing in the tensile and shear planes as well as the edge/end distances, are varied in the analysis. It is found that plastic bearing deformations facilitate shear fracture initiation, and significant uneven stress might occur along the shear failure path. Based on the findings, new design equations pertaining to bolted connection strength are proposed. The design equations not only indicate better correlation with the experimental data than current code equations but also reflect more accurately the actual failure mechanisms in the connections. The results can be useful for assessing in-service connections and achieving reliable yet economical structural design at a consistent safety level.
    publisherASCE
    titleStrength Determination and Fracture Characteristics of Bolted Connections
    typeJournal Paper
    journal volume147
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003076
    journal fristpage04021132-1
    journal lastpage04021132-14
    page14
    treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian