YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    High-Temperature Rheological Characteristics of Asphalt Binder Incorporated with Graphene Oxide and Predicting Its Rutting Potential Using Response Surface Method

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 011::page 04021331-1
    Author:
    Abbas Mukhtar Adnan
    ,
    Chaofeng Lü
    ,
    Xue Luo
    ,
    Jinchang Wang
    DOI: 10.1061/(ASCE)MT.1943-5533.0003957
    Publisher: ASCE
    Abstract: Rutting is one of the most common types of asphalt pavement failures. This study has investigated the high temperature performance of asphalt binders incorporating graphene oxide (GO). To this end, frequency sweep, temperature sweep, and multiple stress creep recovery (MSCR) tests using a dynamic shear rheometer (DSR) were conducted on the control and GO-modified asphalt binders. Response surface methodology (RSM) based on a statistical model was used to investigate the interactive effects of three parameters, namely temperature, GO content, and loading frequency, on the rutting performance of the GO-modified asphalt and develop predictive mathematical models. Atomic force microscopy (AFM) was used to observe the microstructure of the binders. The results of the rheological tests showed that GO considerably enhanced the high temperature performance of the asphalt binder. The MSCR test results revealed that in comparison with the control asphalt, the GO modified binders presented lower nonrecoverable creep compliance (Jnr) and higher percent recovery (R) values, showing a significant contribution of the GO to rutting resistance. The statistical analysis showed that the selected input variables exhibited a notable impact on the complex modulus (G*) and rutting behavior (G*/sinδ) of the asphalt, and quadratic models were proposed for predicting the rutting potential. Finally, the AFM analysis demonstrated that GO was perfectly distributed in the asphalt matrix.
    • Download: (1.636Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      High-Temperature Rheological Characteristics of Asphalt Binder Incorporated with Graphene Oxide and Predicting Its Rutting Potential Using Response Surface Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272619
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorAbbas Mukhtar Adnan
    contributor authorChaofeng Lü
    contributor authorXue Luo
    contributor authorJinchang Wang
    date accessioned2022-02-01T22:06:12Z
    date available2022-02-01T22:06:12Z
    date issued11/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003957.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272619
    description abstractRutting is one of the most common types of asphalt pavement failures. This study has investigated the high temperature performance of asphalt binders incorporating graphene oxide (GO). To this end, frequency sweep, temperature sweep, and multiple stress creep recovery (MSCR) tests using a dynamic shear rheometer (DSR) were conducted on the control and GO-modified asphalt binders. Response surface methodology (RSM) based on a statistical model was used to investigate the interactive effects of three parameters, namely temperature, GO content, and loading frequency, on the rutting performance of the GO-modified asphalt and develop predictive mathematical models. Atomic force microscopy (AFM) was used to observe the microstructure of the binders. The results of the rheological tests showed that GO considerably enhanced the high temperature performance of the asphalt binder. The MSCR test results revealed that in comparison with the control asphalt, the GO modified binders presented lower nonrecoverable creep compliance (Jnr) and higher percent recovery (R) values, showing a significant contribution of the GO to rutting resistance. The statistical analysis showed that the selected input variables exhibited a notable impact on the complex modulus (G*) and rutting behavior (G*/sinδ) of the asphalt, and quadratic models were proposed for predicting the rutting potential. Finally, the AFM analysis demonstrated that GO was perfectly distributed in the asphalt matrix.
    publisherASCE
    titleHigh-Temperature Rheological Characteristics of Asphalt Binder Incorporated with Graphene Oxide and Predicting Its Rutting Potential Using Response Surface Method
    typeJournal Paper
    journal volume33
    journal issue11
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003957
    journal fristpage04021331-1
    journal lastpage04021331-15
    page15
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian