YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Approach to Estimate Hydraulic Conductivity Function from Soil–Water Retention Curve for Noncohesive Soils

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 010::page 04021289-1
    Author:
    Shubham A. Kalore
    ,
    G. L. Sivakumar Babu
    ,
    Ratnakar R. Mahajan
    DOI: 10.1061/(ASCE)MT.1943-5533.0003917
    Publisher: ASCE
    Abstract: Pavement materials are prone to damage due to mechanical loadings and rainfall infiltration. The rainfall initiates moisture movement within the layers and accelerates the damaging rate. A better understanding of the moisture flow and damage can be achieved by rigorous and efficient modeling. The hydraulic conductivity function (HCF) is one of the essential soil properties for numerical seepage modeling. Due to the difficulty in direct HCF measurements, it is generally predicted empirically or statistically by integration along the soil-water retention curve (SWRC) based on the fundamentals of fluid flow in porous media. This paper presents an analytical approach to predict the HCF from experimentally obtained data of an SWRC for noncohesive soils. The model is derived based on the Hagen-Poiseuille law and Darcy law and considered the pore size distribution, porosity, and geometry of the soil grains as inputs. The pore size distribution is considered analogous to a normalized SWRC based on the fundamentals of the capillary theory. The proposed model is validated based on a large number of published experimental data of SWRC and HCF, illustrating the robustness of the model. Additionally, the application of the model is presented for the pavement drainage design.
    • Download: (2.224Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Approach to Estimate Hydraulic Conductivity Function from Soil–Water Retention Curve for Noncohesive Soils

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272579
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorShubham A. Kalore
    contributor authorG. L. Sivakumar Babu
    contributor authorRatnakar R. Mahajan
    date accessioned2022-02-01T22:04:58Z
    date available2022-02-01T22:04:58Z
    date issued10/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003917.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272579
    description abstractPavement materials are prone to damage due to mechanical loadings and rainfall infiltration. The rainfall initiates moisture movement within the layers and accelerates the damaging rate. A better understanding of the moisture flow and damage can be achieved by rigorous and efficient modeling. The hydraulic conductivity function (HCF) is one of the essential soil properties for numerical seepage modeling. Due to the difficulty in direct HCF measurements, it is generally predicted empirically or statistically by integration along the soil-water retention curve (SWRC) based on the fundamentals of fluid flow in porous media. This paper presents an analytical approach to predict the HCF from experimentally obtained data of an SWRC for noncohesive soils. The model is derived based on the Hagen-Poiseuille law and Darcy law and considered the pore size distribution, porosity, and geometry of the soil grains as inputs. The pore size distribution is considered analogous to a normalized SWRC based on the fundamentals of the capillary theory. The proposed model is validated based on a large number of published experimental data of SWRC and HCF, illustrating the robustness of the model. Additionally, the application of the model is presented for the pavement drainage design.
    publisherASCE
    titleApproach to Estimate Hydraulic Conductivity Function from Soil–Water Retention Curve for Noncohesive Soils
    typeJournal Paper
    journal volume33
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003917
    journal fristpage04021289-1
    journal lastpage04021289-12
    page12
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian