YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Influence of Biochar Particle Size Fractions on Thermal and Mechanical Properties of Biochar-Amended Soil

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 009::page 04021236-1
    Author:
    Deepak Patwa
    ,
    Alok Chandra
    ,
    K. Ravi
    ,
    S. Sreedeep
    DOI: 10.1061/(ASCE)MT.1943-5533.0003915
    Publisher: ASCE
    Abstract: Thermal backfill is essential for projects such as underground crude oil pipelines and crude oil storage tanks to control the heat migration from the source. The properties of locally available soil may not be adequate as thermal backfill and hence need suitable amendment. Biochar is a low thermal conductive material and may contribute to an increase in soil strength. There are no such studies that deal with the thermal properties of biochar-based backfill. Further, the influence of biochar particle size fractions on soil thermal properties has not been reported until now. Therefore, the possibility of biochar as a soil amendment for modifying thermal backfill characteristics is explored in this study. Two types of soils (highly plastic silt and clayey sand) are amended with three biochar content amounts (5%, 10%, and 15%), and three different particle size fractions [coarse (4.7–2 mm), medium (2–0.425 mm), and fine (0.425–0.075 mm)], and their compaction characteristics as well as thermal and mechanical properties are investigated. It was observed that the amendment of biochar in soil reduced the thermal and mechanical properties of the soil. Further, the reduction in soil thermal conductivity and volumetric heat capacity with biochar amendment was more in coarser biochar fraction than finer and medium fractions. In comparison, reduction in unconfined compressive strength (UCS) was more in finer biochar fraction. Additionally, the thermal properties reduction was higher in clayey sand than highly plastic silt. An inverse linear correlation of thermal conductivity with pH and electrical conductivity were observed for both soil biochar mixes. The relationship between the thermal properties and UCS indicates that the medium fraction biochar provides the optimized value for reducing thermal properties and UCS of biochar amended soil (BAS). This proves the efficacy of BAS as thermal backfill.
    • Download: (3.754Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Influence of Biochar Particle Size Fractions on Thermal and Mechanical Properties of Biochar-Amended Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272577
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorDeepak Patwa
    contributor authorAlok Chandra
    contributor authorK. Ravi
    contributor authorS. Sreedeep
    date accessioned2022-02-01T22:04:55Z
    date available2022-02-01T22:04:55Z
    date issued9/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003915.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272577
    description abstractThermal backfill is essential for projects such as underground crude oil pipelines and crude oil storage tanks to control the heat migration from the source. The properties of locally available soil may not be adequate as thermal backfill and hence need suitable amendment. Biochar is a low thermal conductive material and may contribute to an increase in soil strength. There are no such studies that deal with the thermal properties of biochar-based backfill. Further, the influence of biochar particle size fractions on soil thermal properties has not been reported until now. Therefore, the possibility of biochar as a soil amendment for modifying thermal backfill characteristics is explored in this study. Two types of soils (highly plastic silt and clayey sand) are amended with three biochar content amounts (5%, 10%, and 15%), and three different particle size fractions [coarse (4.7–2 mm), medium (2–0.425 mm), and fine (0.425–0.075 mm)], and their compaction characteristics as well as thermal and mechanical properties are investigated. It was observed that the amendment of biochar in soil reduced the thermal and mechanical properties of the soil. Further, the reduction in soil thermal conductivity and volumetric heat capacity with biochar amendment was more in coarser biochar fraction than finer and medium fractions. In comparison, reduction in unconfined compressive strength (UCS) was more in finer biochar fraction. Additionally, the thermal properties reduction was higher in clayey sand than highly plastic silt. An inverse linear correlation of thermal conductivity with pH and electrical conductivity were observed for both soil biochar mixes. The relationship between the thermal properties and UCS indicates that the medium fraction biochar provides the optimized value for reducing thermal properties and UCS of biochar amended soil (BAS). This proves the efficacy of BAS as thermal backfill.
    publisherASCE
    titleInfluence of Biochar Particle Size Fractions on Thermal and Mechanical Properties of Biochar-Amended Soil
    typeJournal Paper
    journal volume33
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003915
    journal fristpage04021236-1
    journal lastpage04021236-15
    page15
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian