YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Review of the Properties of Fiber-Reinforced Polymer-Reinforced Seawater–Sea Sand Concrete

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 010::page 04021285-1
    Author:
    Dehui Wang
    ,
    Qingnan Gong
    ,
    Qiang Yuan
    ,
    Surong Luo
    DOI: 10.1061/(ASCE)MT.1943-5533.0003894
    Publisher: ASCE
    Abstract: Fiber-reinforced polymer (FRP)–reinforced seawater–sea sand concrete (SWSSC) is a new structure form for coastal infrastructure, especially for island construction. The degradation mechanism of FRP bars in SWSSC involves water molecules, hydroxide ions, chloride ions, high temperature, and stress. In general, water molecules and hydroxide and chloride ions react with some ingredients in FRP bars, destroy the interface between fiber and resin, and reduce the properties of FRP bars. In the environment of water molecules, hydroxide ions, and chloride ions, the strength retentions of FRP bars were 71%–77%, 26%–98%, and 49%–77%, respectively, depending on composition and manufacturing techniques of fiber. High temperature and stress accelerate the degradation of FRP bars. Under different temperatures and stress levels, the strength retentions of FRP bars were 0.6%–98% and 43%–93%, respectively, depending on the fiber type, temperature, and stress levels. The presence of chloride ions accelerates the hydration of cement and improves the properties of SWSSC at early age. However, the conclusions on the properties of SWSSC at later age are still controversial. Based on previous studies, some future needs on FRP-reinforced SWSSC are also recommended.
    • Download: (7.838Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Review of the Properties of Fiber-Reinforced Polymer-Reinforced Seawater–Sea Sand Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272556
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorDehui Wang
    contributor authorQingnan Gong
    contributor authorQiang Yuan
    contributor authorSurong Luo
    date accessioned2022-02-01T22:04:22Z
    date available2022-02-01T22:04:22Z
    date issued10/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003894.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272556
    description abstractFiber-reinforced polymer (FRP)–reinforced seawater–sea sand concrete (SWSSC) is a new structure form for coastal infrastructure, especially for island construction. The degradation mechanism of FRP bars in SWSSC involves water molecules, hydroxide ions, chloride ions, high temperature, and stress. In general, water molecules and hydroxide and chloride ions react with some ingredients in FRP bars, destroy the interface between fiber and resin, and reduce the properties of FRP bars. In the environment of water molecules, hydroxide ions, and chloride ions, the strength retentions of FRP bars were 71%–77%, 26%–98%, and 49%–77%, respectively, depending on composition and manufacturing techniques of fiber. High temperature and stress accelerate the degradation of FRP bars. Under different temperatures and stress levels, the strength retentions of FRP bars were 0.6%–98% and 43%–93%, respectively, depending on the fiber type, temperature, and stress levels. The presence of chloride ions accelerates the hydration of cement and improves the properties of SWSSC at early age. However, the conclusions on the properties of SWSSC at later age are still controversial. Based on previous studies, some future needs on FRP-reinforced SWSSC are also recommended.
    publisherASCE
    titleReview of the Properties of Fiber-Reinforced Polymer-Reinforced Seawater–Sea Sand Concrete
    typeJournal Paper
    journal volume33
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003894
    journal fristpage04021285-1
    journal lastpage04021285-18
    page18
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian