YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Tensile–Strain Rate and Specimen Width on Mechanical Properties of Cold-Formed Q345 Steel at Elevated Temperatures

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 009::page 04021218-1
    Author:
    Weiyong Wang
    ,
    Ziqi Wang
    ,
    Zhanshuo Liang
    ,
    Lei Xu
    DOI: 10.1061/(ASCE)MT.1943-5533.0003889
    Publisher: ASCE
    Abstract: The objective of this paper is to to ascertain the reliable mechanical properties of cold-formed Q345 steel at elevated temperatures while considerting the effects of tensile strain rate and specimen width. This paper presents an experimental study on the mechanical properties of cold-formed Q345 steel at temperatures ranging from 20°C to 800°C tested with two specimen widths and three tensile–strain rates, namely 0.06/min, 0.6/min, and 1.2/min. Tensile specimens were fabricated from a steel plate with a nominal thickness of 2.5 mm and tensile tests were carried out to determine the stress–strain relationship, yield strength, tensile strength, and elastic modulus. The test results showed that the tensile–strain rate has a maximum influence of 9% on yield and tensile strength at 600°C and the specimen width has a maximum influence of 14% on yield and tensile strength at 400°C. The maximum influence of the tensile–strain rate and specimen width on the elastic modulus is 18% and 12% respectively at 500°C. The necking phenomenon is less noticeable at temperatures below 300°C but is clearly observed at temperatures above 300°C. The comparison of the test results with predictions obtained from design standards (EC3, AISC, and AS4100) indicates a good agreement on the yield and tensile strength, but the magnitudes of elastic modulus obtained from the test are considerably higher than those obtained from the design standards. Based on averaged values of the test results associated with different tensile–strain rates and specimen widths, predictive equations were proposed to determine the mechanical properties of cold-formed Q345 steel at elevated temperatures.
    • Download: (1.678Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Tensile–Strain Rate and Specimen Width on Mechanical Properties of Cold-Formed Q345 Steel at Elevated Temperatures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272551
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorWeiyong Wang
    contributor authorZiqi Wang
    contributor authorZhanshuo Liang
    contributor authorLei Xu
    date accessioned2022-02-01T22:04:12Z
    date available2022-02-01T22:04:12Z
    date issued9/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003889.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272551
    description abstractThe objective of this paper is to to ascertain the reliable mechanical properties of cold-formed Q345 steel at elevated temperatures while considerting the effects of tensile strain rate and specimen width. This paper presents an experimental study on the mechanical properties of cold-formed Q345 steel at temperatures ranging from 20°C to 800°C tested with two specimen widths and three tensile–strain rates, namely 0.06/min, 0.6/min, and 1.2/min. Tensile specimens were fabricated from a steel plate with a nominal thickness of 2.5 mm and tensile tests were carried out to determine the stress–strain relationship, yield strength, tensile strength, and elastic modulus. The test results showed that the tensile–strain rate has a maximum influence of 9% on yield and tensile strength at 600°C and the specimen width has a maximum influence of 14% on yield and tensile strength at 400°C. The maximum influence of the tensile–strain rate and specimen width on the elastic modulus is 18% and 12% respectively at 500°C. The necking phenomenon is less noticeable at temperatures below 300°C but is clearly observed at temperatures above 300°C. The comparison of the test results with predictions obtained from design standards (EC3, AISC, and AS4100) indicates a good agreement on the yield and tensile strength, but the magnitudes of elastic modulus obtained from the test are considerably higher than those obtained from the design standards. Based on averaged values of the test results associated with different tensile–strain rates and specimen widths, predictive equations were proposed to determine the mechanical properties of cold-formed Q345 steel at elevated temperatures.
    publisherASCE
    titleEffect of Tensile–Strain Rate and Specimen Width on Mechanical Properties of Cold-Formed Q345 Steel at Elevated Temperatures
    typeJournal Paper
    journal volume33
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003889
    journal fristpage04021218-1
    journal lastpage04021218-10
    page10
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian