YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Manufacture and Engineering Properties of Cementitious Mortar Incorporating Unground Rice Husk Ash as Fine Aggregate

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 010::page 04021258-1
    Author:
    Vu-An Tran
    ,
    Chao-Lung Hwang
    ,
    Duy-Hai Vo
    DOI: 10.1061/(ASCE)MT.1943-5533.0003888
    Publisher: ASCE
    Abstract: This study investigates the manufacture and engineering properties of cementitious mortar incorporating unground rice husk ash (URHA) as fine aggregate. Six mixtures of mortar were produced with using URHA to substitute for crushed sand in amounts of 0%, 20%, 40%, 60%, 80%, and 100% by volume at constant water-to-powder ratio of 0.6 and volume ratio of fine aggregate to powder of 2.5. The experimental series consisted of the flowability, density, water absorption, compressive strength, flexural strength, dynamic modulus of elasticity, ultrasonic pulse velocity, and scanning electron microscopy tested under relevant standards. The fresh and dried densities of mortar with URHA significantly reduced from 5% to 29% and from 8% to 39%, respectively, compared to mortar without URHA. The higher ratio of URHA to fine aggregate led to a darker color, and higher water absorption of cementitious mortar. Replacing of 20%–40% fine aggregate volume by URHA produced mortars with comparable compressive strength at later ages. The flexural strength, dynamic modulus of elasticity, and ultrasonic pulse velocity values of mortar presented the downtrend with increase of URHA content; however, the developing rate of these values was meaningfully promoted at later ages due to internal curing and pozzolanic action. The present study supported the technical feasibility and environmental friendliness of cementitious mortar produced with replacing the natural fine aggregate up to 100% in volume.
    • Download: (3.017Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Manufacture and Engineering Properties of Cementitious Mortar Incorporating Unground Rice Husk Ash as Fine Aggregate

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272550
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorVu-An Tran
    contributor authorChao-Lung Hwang
    contributor authorDuy-Hai Vo
    date accessioned2022-02-01T22:04:11Z
    date available2022-02-01T22:04:11Z
    date issued10/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003888.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272550
    description abstractThis study investigates the manufacture and engineering properties of cementitious mortar incorporating unground rice husk ash (URHA) as fine aggregate. Six mixtures of mortar were produced with using URHA to substitute for crushed sand in amounts of 0%, 20%, 40%, 60%, 80%, and 100% by volume at constant water-to-powder ratio of 0.6 and volume ratio of fine aggregate to powder of 2.5. The experimental series consisted of the flowability, density, water absorption, compressive strength, flexural strength, dynamic modulus of elasticity, ultrasonic pulse velocity, and scanning electron microscopy tested under relevant standards. The fresh and dried densities of mortar with URHA significantly reduced from 5% to 29% and from 8% to 39%, respectively, compared to mortar without URHA. The higher ratio of URHA to fine aggregate led to a darker color, and higher water absorption of cementitious mortar. Replacing of 20%–40% fine aggregate volume by URHA produced mortars with comparable compressive strength at later ages. The flexural strength, dynamic modulus of elasticity, and ultrasonic pulse velocity values of mortar presented the downtrend with increase of URHA content; however, the developing rate of these values was meaningfully promoted at later ages due to internal curing and pozzolanic action. The present study supported the technical feasibility and environmental friendliness of cementitious mortar produced with replacing the natural fine aggregate up to 100% in volume.
    publisherASCE
    titleManufacture and Engineering Properties of Cementitious Mortar Incorporating Unground Rice Husk Ash as Fine Aggregate
    typeJournal Paper
    journal volume33
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003888
    journal fristpage04021258-1
    journal lastpage04021258-9
    page9
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian