YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical and Antibacterial Behavior of Photocatalytic Lightweight Engineered Cementitious Composites

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 010::page 04021262-1
    Author:
    Abdul Halim Hamdany
    ,
    Yuanzhao Ding
    ,
    Shunzhi Qian
    DOI: 10.1061/(ASCE)MT.1943-5533.0003886
    Publisher: ASCE
    Abstract: In recent years, there has been increasing interest in using cementitious materials as a catalyst-supporting media such as air-purifying paving block, self-cleaning exterior wall, and photocatalytic ceiling panel. Despite many works on photocatalytic cementitious materials, most of them were focused on the application of TiO2-based cement mortars. Little work has been done on the development of photocatalytic functionalities on highperformance fiber-reinforced cementitious composite (HPFRC). Engineered cementitious composites (ECCs), a class of HPFRC, have been used in a wide range of full-scale applications, from sprayed ECC for dam retrofitting to lightweight building facade and bridge deck pavement. In this work, titanium dioxide (TiO2) was incorporated into lightweight ECC. The influence of TiO2 and different lightweight ingredient materials on mechanical properties and antibacterial behavior based on Escherichia coli (E. coli) was investigated. Two types of lightweight aggregates were evaluated: fly ash cenospheres (FACs) and glass bubbles K-1. Furthermore, an air-entraining agent (AEA) was also evaluated to induce air bubbles to achieve lightweight ECC. The use of a glass bubble is preferable to achieve lightweight ECC with a density of around 890  kg/m3 (60% lower than normal ECC) while maintaining a tensile strain capacity of more than 3% with moderate tensile strength. At the same time, lightweight ECC using glass bubbles show the smallest number of viable bacteria after 240 min of ultraviolet (UV)/visible light exposure. The smallest number of viable bacteria indicates it has the highest antibacterial activity among lightweight ECC materials. The use of glass bubble significantly alters the pore structure of lightweight ECC, which improves the access to irradiate TiO2 particle. The incident photon could pass along the pore to activate more TiO2 particles for the photocatalytic process.
    • Download: (2.467Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical and Antibacterial Behavior of Photocatalytic Lightweight Engineered Cementitious Composites

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272546
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorAbdul Halim Hamdany
    contributor authorYuanzhao Ding
    contributor authorShunzhi Qian
    date accessioned2022-02-01T22:04:02Z
    date available2022-02-01T22:04:02Z
    date issued10/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003886.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272546
    description abstractIn recent years, there has been increasing interest in using cementitious materials as a catalyst-supporting media such as air-purifying paving block, self-cleaning exterior wall, and photocatalytic ceiling panel. Despite many works on photocatalytic cementitious materials, most of them were focused on the application of TiO2-based cement mortars. Little work has been done on the development of photocatalytic functionalities on highperformance fiber-reinforced cementitious composite (HPFRC). Engineered cementitious composites (ECCs), a class of HPFRC, have been used in a wide range of full-scale applications, from sprayed ECC for dam retrofitting to lightweight building facade and bridge deck pavement. In this work, titanium dioxide (TiO2) was incorporated into lightweight ECC. The influence of TiO2 and different lightweight ingredient materials on mechanical properties and antibacterial behavior based on Escherichia coli (E. coli) was investigated. Two types of lightweight aggregates were evaluated: fly ash cenospheres (FACs) and glass bubbles K-1. Furthermore, an air-entraining agent (AEA) was also evaluated to induce air bubbles to achieve lightweight ECC. The use of a glass bubble is preferable to achieve lightweight ECC with a density of around 890  kg/m3 (60% lower than normal ECC) while maintaining a tensile strain capacity of more than 3% with moderate tensile strength. At the same time, lightweight ECC using glass bubbles show the smallest number of viable bacteria after 240 min of ultraviolet (UV)/visible light exposure. The smallest number of viable bacteria indicates it has the highest antibacterial activity among lightweight ECC materials. The use of glass bubble significantly alters the pore structure of lightweight ECC, which improves the access to irradiate TiO2 particle. The incident photon could pass along the pore to activate more TiO2 particles for the photocatalytic process.
    publisherASCE
    titleMechanical and Antibacterial Behavior of Photocatalytic Lightweight Engineered Cementitious Composites
    typeJournal Paper
    journal volume33
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003886
    journal fristpage04021262-1
    journal lastpage04021262-10
    page10
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian