YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of High-Performance Microfine Cementitious Grout with High Amount of Fly Ash, Silica Fume, and Slag

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 010::page 04021270-1
    Author:
    Fei Sha
    ,
    Peng Liu
    DOI: 10.1061/(ASCE)MT.1943-5533.0003853
    Publisher: ASCE
    Abstract: To develop high-performance microfine cementitious grout (HPMCG), the matrix [microfine Portland cement clinker (MPCC) + flue gas desulfurizing gypsum (MFGDG) + calcium carbonate (MCC)], microfine fly ash (MFA), silica fume (SF), and blast-furnace slag (MBFS) were selected. The viscoelasticity, fresh-state properties, mechanical performance, antipermeability, hydration mineral, and microstructure were investigated systematically. The 0%–3.0% naphthalene-based superplasticizer (N) and 1.0%–2.6% composite activator (CA) were applied, and the ratio of the water to binder (w/b) was selected as 0.8–3.0 by weight. The optimum component of HPMCG was acquired as the amount of MFA was 40% relative to that of the matrix, and the additional contents of SF and MBFS were 10% and 30%. The amounts of N and CA were suggested as 1.5%–2.0% and 2.4%, respectively. After optimization, the maximal flexural strength (FS) and unconfined compressive strength (UCS) of the HPMCG (91-day) can achieve 7.29 and 31.65 MPa; nearly all of the calcium hydroxide reacted, and more gels were generated. More generated gels interconnected with each other to form dense network structures, there were few microvoids and pores, and the entirety of the microstructure was enhanced obviously. The optimized HPMCG surpassed the expectation. The optimized HPMCG has superiorities, such as excellent viscoelasticity, good fluidity, high stability or stone rate, high mechanical strength, good antipermeability, an advantageous mineral component, and a microstructure. In civil engineering, they can satisfy high standard demands of construction and repair grouting practices.
    • Download: (4.699Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of High-Performance Microfine Cementitious Grout with High Amount of Fly Ash, Silica Fume, and Slag

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272518
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorFei Sha
    contributor authorPeng Liu
    date accessioned2022-02-01T22:03:13Z
    date available2022-02-01T22:03:13Z
    date issued10/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003853.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272518
    description abstractTo develop high-performance microfine cementitious grout (HPMCG), the matrix [microfine Portland cement clinker (MPCC) + flue gas desulfurizing gypsum (MFGDG) + calcium carbonate (MCC)], microfine fly ash (MFA), silica fume (SF), and blast-furnace slag (MBFS) were selected. The viscoelasticity, fresh-state properties, mechanical performance, antipermeability, hydration mineral, and microstructure were investigated systematically. The 0%–3.0% naphthalene-based superplasticizer (N) and 1.0%–2.6% composite activator (CA) were applied, and the ratio of the water to binder (w/b) was selected as 0.8–3.0 by weight. The optimum component of HPMCG was acquired as the amount of MFA was 40% relative to that of the matrix, and the additional contents of SF and MBFS were 10% and 30%. The amounts of N and CA were suggested as 1.5%–2.0% and 2.4%, respectively. After optimization, the maximal flexural strength (FS) and unconfined compressive strength (UCS) of the HPMCG (91-day) can achieve 7.29 and 31.65 MPa; nearly all of the calcium hydroxide reacted, and more gels were generated. More generated gels interconnected with each other to form dense network structures, there were few microvoids and pores, and the entirety of the microstructure was enhanced obviously. The optimized HPMCG surpassed the expectation. The optimized HPMCG has superiorities, such as excellent viscoelasticity, good fluidity, high stability or stone rate, high mechanical strength, good antipermeability, an advantageous mineral component, and a microstructure. In civil engineering, they can satisfy high standard demands of construction and repair grouting practices.
    publisherASCE
    titleDevelopment of High-Performance Microfine Cementitious Grout with High Amount of Fly Ash, Silica Fume, and Slag
    typeJournal Paper
    journal volume33
    journal issue10
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003853
    journal fristpage04021270-1
    journal lastpage04021270-17
    page17
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian