YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Durability of Slag–Cement Paste Containing Polyaluminum Chloride

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 009::page 04021235-1
    Author:
    Wu-Jian Long
    ,
    Jun-kai Peng
    ,
    Yu-cun Gu
    ,
    Zhi-Lu Jiang
    ,
    Luping Tang
    ,
    Feng Xing
    DOI: 10.1061/(ASCE)MT.1943-5533.0003850
    Publisher: ASCE
    Abstract: The effect of polyaluminum chloride (PAC) on the durability, microstructure, and corrosion sensitivity of slag–cement pastes was investigated in this research. Various experimental tests were performed to assess the mechanical properties (compressive strength test), durability (rapid chloride migration test, water permeability test, capillary water absorption test, chloride binding test, accelerated carbonation test), microstructure (scanning electron microscopy, X-ray diffraction, mercury intrusion porosimetry), and corrosion sensitivity (accelerated corrosion sensitivity, initial chloride concentration). Experimental results showed that adding 1.5% PAC increased compressive strength by 77.0%, 53.8%, and 19.4% at 3, 7, and 28 days. Resistance to chloride migration, water permeation, capillary water absorption, and carbonation was improved. These results were consistent with the microstructural analysis, which showed that adding PAC facilitated the formation of Friedel’s salt and development of pore structure, which was the key factor for the improved durability of the slag–cement paste. Adding 1.5% PAC had a limited influence on the corrosion sensitivity despite introducing the additional chloride ions into the system. These results promote the further practical application of PAC.
    • Download: (2.385Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Durability of Slag–Cement Paste Containing Polyaluminum Chloride

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272516
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorWu-Jian Long
    contributor authorJun-kai Peng
    contributor authorYu-cun Gu
    contributor authorZhi-Lu Jiang
    contributor authorLuping Tang
    contributor authorFeng Xing
    date accessioned2022-02-01T22:03:09Z
    date available2022-02-01T22:03:09Z
    date issued9/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003850.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272516
    description abstractThe effect of polyaluminum chloride (PAC) on the durability, microstructure, and corrosion sensitivity of slag–cement pastes was investigated in this research. Various experimental tests were performed to assess the mechanical properties (compressive strength test), durability (rapid chloride migration test, water permeability test, capillary water absorption test, chloride binding test, accelerated carbonation test), microstructure (scanning electron microscopy, X-ray diffraction, mercury intrusion porosimetry), and corrosion sensitivity (accelerated corrosion sensitivity, initial chloride concentration). Experimental results showed that adding 1.5% PAC increased compressive strength by 77.0%, 53.8%, and 19.4% at 3, 7, and 28 days. Resistance to chloride migration, water permeation, capillary water absorption, and carbonation was improved. These results were consistent with the microstructural analysis, which showed that adding PAC facilitated the formation of Friedel’s salt and development of pore structure, which was the key factor for the improved durability of the slag–cement paste. Adding 1.5% PAC had a limited influence on the corrosion sensitivity despite introducing the additional chloride ions into the system. These results promote the further practical application of PAC.
    publisherASCE
    titleDurability of Slag–Cement Paste Containing Polyaluminum Chloride
    typeJournal Paper
    journal volume33
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003850
    journal fristpage04021235-1
    journal lastpage04021235-11
    page11
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian