YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fatigue Life of Green Stabilized Fiber-Reinforced Sulfate-Rich Dispersive Soil

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 009::page 04021249-1
    Author:
    Nilo Cesar Consoli
    ,
    Lucas Festugato
    ,
    Gustavo Dias Miguel
    ,
    Eclesielter Batista Moreira
    ,
    Hugo Carlos Scheuermann Filho
    DOI: 10.1061/(ASCE)MT.1943-5533.0003842
    Publisher: ASCE
    Abstract: Sulfate-rich dispersive soils are worldwide responsible for damaging earthworks, such as roadway roadbeds and embankments. One of the causes for such behavior is the high amount of exchangeable sodium ions adsorbed on their clay particles vastly increasing erosion susceptibility, being responsible for problems as piping, ravines, and water turbidity. In order to reduce the erodibility, it is usual to treat such soils with calcium-based stabilizers. However, in the presence of sulfates, when combined with calcium-based stabilizers in the soil, reactions take place between stabilizers and sulfates to form expansive minerals. Namely, these minerals are known as ettringite and thaumasite and are responsible for excessive volumetric swell. In this context, the present research aims to develop alternative soil stabilizers (industrial byproducts plus artificial pozzolans) and reinforcements (fiberglass) to solve problems associated with sulfate-rich dispersive soils. Thus, a binder composed of carbide lime and ground glass was used. In addition, fiberglass was applied to look for enhanced mechanical properties of the materials. To assess the efficiency of the proposed stabilization and reinforcement, unconfined compressive and splitting tensile strength, ultrasonic pulse velocity, wet and dry durability, and fatigue life tests were carried out. Soil–ground glass–carbide lime-fiberglass blends were molded at different porosities, carbide lime, ground glass, and fiberglass contents. Results show that unconfined compressive and split tensile strength and initial shear modulus are highly dependent on changes in porosity and lime content. Durability, expressed as the accumulated loss of mass, could be assessed through the adjusted porosity/lime index (η/Liv). Fiberglass inclusion resulted in higher tensile strength. The fatigue life was correlated to the η/Liv index through a negative exponent. The greater the carbide lime level, the smaller was the fatigue life for all treated specimens. An increase in porosity results in fewer contacts between particles, whereas an increase in carbide lime content enhanced the specimen’s rigidity.
    • Download: (1.400Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fatigue Life of Green Stabilized Fiber-Reinforced Sulfate-Rich Dispersive Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272507
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorNilo Cesar Consoli
    contributor authorLucas Festugato
    contributor authorGustavo Dias Miguel
    contributor authorEclesielter Batista Moreira
    contributor authorHugo Carlos Scheuermann Filho
    date accessioned2022-02-01T22:02:43Z
    date available2022-02-01T22:02:43Z
    date issued9/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003842.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272507
    description abstractSulfate-rich dispersive soils are worldwide responsible for damaging earthworks, such as roadway roadbeds and embankments. One of the causes for such behavior is the high amount of exchangeable sodium ions adsorbed on their clay particles vastly increasing erosion susceptibility, being responsible for problems as piping, ravines, and water turbidity. In order to reduce the erodibility, it is usual to treat such soils with calcium-based stabilizers. However, in the presence of sulfates, when combined with calcium-based stabilizers in the soil, reactions take place between stabilizers and sulfates to form expansive minerals. Namely, these minerals are known as ettringite and thaumasite and are responsible for excessive volumetric swell. In this context, the present research aims to develop alternative soil stabilizers (industrial byproducts plus artificial pozzolans) and reinforcements (fiberglass) to solve problems associated with sulfate-rich dispersive soils. Thus, a binder composed of carbide lime and ground glass was used. In addition, fiberglass was applied to look for enhanced mechanical properties of the materials. To assess the efficiency of the proposed stabilization and reinforcement, unconfined compressive and splitting tensile strength, ultrasonic pulse velocity, wet and dry durability, and fatigue life tests were carried out. Soil–ground glass–carbide lime-fiberglass blends were molded at different porosities, carbide lime, ground glass, and fiberglass contents. Results show that unconfined compressive and split tensile strength and initial shear modulus are highly dependent on changes in porosity and lime content. Durability, expressed as the accumulated loss of mass, could be assessed through the adjusted porosity/lime index (η/Liv). Fiberglass inclusion resulted in higher tensile strength. The fatigue life was correlated to the η/Liv index through a negative exponent. The greater the carbide lime level, the smaller was the fatigue life for all treated specimens. An increase in porosity results in fewer contacts between particles, whereas an increase in carbide lime content enhanced the specimen’s rigidity.
    publisherASCE
    titleFatigue Life of Green Stabilized Fiber-Reinforced Sulfate-Rich Dispersive Soil
    typeJournal Paper
    journal volume33
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003842
    journal fristpage04021249-1
    journal lastpage04021249-12
    page12
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian