YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Impact of Elevated Temperatures on the Performance of High-Strength Engineered Cementitious Composite

    Source: Journal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 009::page 04021222-1
    Author:
    Jianqiang He
    ,
    Qing Wang
    ,
    Boyu Yao
    ,
    Johnny Ho
    DOI: 10.1061/(ASCE)MT.1943-5533.0003812
    Publisher: ASCE
    Abstract: Engineered cementitious composite (ECC) is a relatively recent construction material with characteristics of high ductility and energy dissipation capacity. Such ductility is fulfilled by adding polymeric fibers, such as polypropylene (PP), polyethylene (PE), and polyvinyl alcohol (PVA) fibers, which would inevitably experience fusion under fire. This paper focuses on the behavior deterioration of postexposure high-strength engineered cementitious composite (HSECC). Color change, surface cracking, and spalling phenomena of HSECC specimens were inspected after specimens exposed to 200°C, 400°C, 600°C, 800°C, and 1,200°C for 1 h. Weight loss, residual compressive/flexural strength, and failure modes of cubes were evaluated correspondingly. Experimental results indicated that the threshold temperature for HSECC to crack is lowered in comparison with ECC of normal strength, whereas explosive spalling behavior could still be prevented effectively with 2.0 vol% PVA fiber. The loss ratio of weight and strength in HSECC was lower than that in ECC, but the failure modes under compression were found to be more catastrophic. HSECC exhibits lower intensity in an X-ray diffraction (XRD) curve than that of ECC. Apparent needle-like channels were observed beyond 400°C, then were gradually filled with reaction products ascribed to the synergistic effect of thermal expansion, volume increase caused by chemical reactions and pore-structure coarsening, and manifested by the results of mercury intrusion porosimetry (MIP).
    • Download: (4.005Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Impact of Elevated Temperatures on the Performance of High-Strength Engineered Cementitious Composite

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272490
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJianqiang He
    contributor authorQing Wang
    contributor authorBoyu Yao
    contributor authorJohnny Ho
    date accessioned2022-02-01T22:02:06Z
    date available2022-02-01T22:02:06Z
    date issued9/1/2021
    identifier other%28ASCE%29MT.1943-5533.0003812.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272490
    description abstractEngineered cementitious composite (ECC) is a relatively recent construction material with characteristics of high ductility and energy dissipation capacity. Such ductility is fulfilled by adding polymeric fibers, such as polypropylene (PP), polyethylene (PE), and polyvinyl alcohol (PVA) fibers, which would inevitably experience fusion under fire. This paper focuses on the behavior deterioration of postexposure high-strength engineered cementitious composite (HSECC). Color change, surface cracking, and spalling phenomena of HSECC specimens were inspected after specimens exposed to 200°C, 400°C, 600°C, 800°C, and 1,200°C for 1 h. Weight loss, residual compressive/flexural strength, and failure modes of cubes were evaluated correspondingly. Experimental results indicated that the threshold temperature for HSECC to crack is lowered in comparison with ECC of normal strength, whereas explosive spalling behavior could still be prevented effectively with 2.0 vol% PVA fiber. The loss ratio of weight and strength in HSECC was lower than that in ECC, but the failure modes under compression were found to be more catastrophic. HSECC exhibits lower intensity in an X-ray diffraction (XRD) curve than that of ECC. Apparent needle-like channels were observed beyond 400°C, then were gradually filled with reaction products ascribed to the synergistic effect of thermal expansion, volume increase caused by chemical reactions and pore-structure coarsening, and manifested by the results of mercury intrusion porosimetry (MIP).
    publisherASCE
    titleImpact of Elevated Temperatures on the Performance of High-Strength Engineered Cementitious Composite
    typeJournal Paper
    journal volume33
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0003812
    journal fristpage04021222-1
    journal lastpage04021222-17
    page17
    treeJournal of Materials in Civil Engineering:;2021:;Volume ( 033 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian