YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ultrahigh-Performance Concrete for Improving Impact Resistance of Bridge Superstructures to Overheight Collision

    Source: Journal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 009::page 04021060-1
    Author:
    Kofi Oppong
    ,
    Dikshant Saini
    ,
    Behrouz Shafei
    DOI: 10.1061/(ASCE)BE.1943-5592.0001736
    Publisher: ASCE
    Abstract: Collision of overheight vehicles into bridge superstructures often leads to structural damage, posing an immediate risk to the safety of motorists and the functionality of bridges. Considering the proven vulnerability of current high-strength concrete (HSC) girders to impact-induced forces, the use of ultrahigh-performance concrete (UHPC) (to fully or partially replace HSC) is expected to improve the impact resistance of bridge superstructures. However, despite the growing attention that UHPC has received for various bridge applications, this important application has remained largely unexplored. This motivated the current study to perform a holistic investigation to (1) quantify how the performance of bridge girders subjected to overheight collision can be improved by a one-to-one replacement of HSC with UHPC; (2) assess how UHPC can be considered as a material of choice for repairing existing bridge girders impacted by overheight vehicles; and (3) examine how equivalent UHPC girders designed for a performance similar to HSC girders under service loads can introduce advantages when subjected to overheight collision. For this purpose, upon validating a set of finite-element models with experimental test results, numerical simulations are performed on two types of AASHTO girders. The simulations cover two impacting objects, i.e., a concrete conduit pipe and a cylindrical steel tank, in addition to a tractor–semitrailer. The structural performance measures of the bridge girders made of HSC (entirely), UHPC (entirely), HSC repaired with UHPC, and equivalent UHPC are then evaluated and compared based on the recorded damage patterns, impact forces, internal shears, and lateral displacements. The outcome of this study provides the necessary details to shed light on how a transition from HSC to UHPC can contribute to improving the overall safety and performance of new and retrofitted bridges, especially when subjected to overheight collision.
    • Download: (3.154Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ultrahigh-Performance Concrete for Improving Impact Resistance of Bridge Superstructures to Overheight Collision

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272460
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorKofi Oppong
    contributor authorDikshant Saini
    contributor authorBehrouz Shafei
    date accessioned2022-02-01T22:00:47Z
    date available2022-02-01T22:00:47Z
    date issued9/1/2021
    identifier other%28ASCE%29BE.1943-5592.0001736.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272460
    description abstractCollision of overheight vehicles into bridge superstructures often leads to structural damage, posing an immediate risk to the safety of motorists and the functionality of bridges. Considering the proven vulnerability of current high-strength concrete (HSC) girders to impact-induced forces, the use of ultrahigh-performance concrete (UHPC) (to fully or partially replace HSC) is expected to improve the impact resistance of bridge superstructures. However, despite the growing attention that UHPC has received for various bridge applications, this important application has remained largely unexplored. This motivated the current study to perform a holistic investigation to (1) quantify how the performance of bridge girders subjected to overheight collision can be improved by a one-to-one replacement of HSC with UHPC; (2) assess how UHPC can be considered as a material of choice for repairing existing bridge girders impacted by overheight vehicles; and (3) examine how equivalent UHPC girders designed for a performance similar to HSC girders under service loads can introduce advantages when subjected to overheight collision. For this purpose, upon validating a set of finite-element models with experimental test results, numerical simulations are performed on two types of AASHTO girders. The simulations cover two impacting objects, i.e., a concrete conduit pipe and a cylindrical steel tank, in addition to a tractor–semitrailer. The structural performance measures of the bridge girders made of HSC (entirely), UHPC (entirely), HSC repaired with UHPC, and equivalent UHPC are then evaluated and compared based on the recorded damage patterns, impact forces, internal shears, and lateral displacements. The outcome of this study provides the necessary details to shed light on how a transition from HSC to UHPC can contribute to improving the overall safety and performance of new and retrofitted bridges, especially when subjected to overheight collision.
    publisherASCE
    titleUltrahigh-Performance Concrete for Improving Impact Resistance of Bridge Superstructures to Overheight Collision
    typeJournal Paper
    journal volume26
    journal issue9
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001736
    journal fristpage04021060-1
    journal lastpage04021060-18
    page18
    treeJournal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian