YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Investigation on the Dynamic Failure Envelope and Cracking Mechanism of Precompressed Rock under Compression-Shear Loads

    Source: International Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 011::page 04021208-1
    Author:
    Yuan Xu
    ,
    Antonio Pellegrino
    ,
    Feng Dai
    ,
    Hongbo Du
    DOI: 10.1061/(ASCE)GM.1943-5622.0002196
    Publisher: ASCE
    Abstract: The complex response of underground geomaterials subjected to dynamic disturbance arises from the microstructure redistribution under high in- situ stress and the resulting fracture behaviors at multiaxial stress states. Inclined specimens were employed in an axially constrained split Hopkinson pressure bar (SHPB) system to achieve a combination of compression-shear stress states and static-dynamic loads. The loading rate under investigation ranged from 500 to 4,000 GPa/s, along with the axial prestress of 7, 21, 35, 49, and 63 MPa on specimens with an inclination of 0°, 3°, 5°, and 7°. The modified SHPB experimentation and discrete-element method modeling were implemented to unravel the combined effects of the loading rate, preload, and stress path on the failure mechanism of sandstone specimens involving the failure strength and envelope, fracturing pattern, fragmentation, and microcracking process. The positive rate dependence of the failure strength and Drucker–Prager envelope was observed. The preload showed double effects on the failure strength, indicated by an upper bound of the failure envelope as it expanded with the increasing preload. The microdamage accumulated during preloading and the global stress field collectively influenced the failure pattern of the inclined specimen, altering from a shear fracturing mode under dynamic loading or high-preload static-dynamic loading to an axial splitting mode near the specimen surface under low-preload static-dynamic loading.
    • Download: (4.813Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Investigation on the Dynamic Failure Envelope and Cracking Mechanism of Precompressed Rock under Compression-Shear Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272264
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorYuan Xu
    contributor authorAntonio Pellegrino
    contributor authorFeng Dai
    contributor authorHongbo Du
    date accessioned2022-02-01T21:54:24Z
    date available2022-02-01T21:54:24Z
    date issued11/1/2021
    identifier other%28ASCE%29GM.1943-5622.0002196.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272264
    description abstractThe complex response of underground geomaterials subjected to dynamic disturbance arises from the microstructure redistribution under high in- situ stress and the resulting fracture behaviors at multiaxial stress states. Inclined specimens were employed in an axially constrained split Hopkinson pressure bar (SHPB) system to achieve a combination of compression-shear stress states and static-dynamic loads. The loading rate under investigation ranged from 500 to 4,000 GPa/s, along with the axial prestress of 7, 21, 35, 49, and 63 MPa on specimens with an inclination of 0°, 3°, 5°, and 7°. The modified SHPB experimentation and discrete-element method modeling were implemented to unravel the combined effects of the loading rate, preload, and stress path on the failure mechanism of sandstone specimens involving the failure strength and envelope, fracturing pattern, fragmentation, and microcracking process. The positive rate dependence of the failure strength and Drucker–Prager envelope was observed. The preload showed double effects on the failure strength, indicated by an upper bound of the failure envelope as it expanded with the increasing preload. The microdamage accumulated during preloading and the global stress field collectively influenced the failure pattern of the inclined specimen, altering from a shear fracturing mode under dynamic loading or high-preload static-dynamic loading to an axial splitting mode near the specimen surface under low-preload static-dynamic loading.
    publisherASCE
    titleExperimental and Numerical Investigation on the Dynamic Failure Envelope and Cracking Mechanism of Precompressed Rock under Compression-Shear Loads
    typeJournal Paper
    journal volume21
    journal issue11
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002196
    journal fristpage04021208-1
    journal lastpage04021208-21
    page21
    treeInternational Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian