YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evolution of Load Reduction for High-Filled Cut-and-Cover Tunnels Subjected to Soil Creep

    Source: International Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 009::page 04021172-1
    Author:
    Sheng Li
    ,
    Yuchi Jianie
    ,
    I-Hsuan Ho
    ,
    Li Ma
    ,
    Bentian Yu
    ,
    Changdan Wang
    DOI: 10.1061/(ASCE)GM.1943-5622.0002089
    Publisher: ASCE
    Abstract: The excessive load from the high embankments of high-filled cut-and-cover tunnels (HFCCTs) threatens the safety and stability of HFCCTs. Relatively low-compacted (RLC) soil can reduce such loads in the short term, but the long-term ability of RLC soil to reduce the load on HFCCTs is unknown. The changes in the soil arching effect that are resulted from soil creep needs to be considered carefully in HFCCT design. Three stages of analysis were conducted in this study: immediately after backfilling (0 month), during backfill creep, and after the soil deformation has stabilized (240 months/20 years). A finite difference program, FLAC3D, was employed to investigate the soil’s vertical earth pressure and displacement distribution around a cut-and-cover tunnel (CCT). The Burgers model was used to simulate the creep behavior of the soil. In addition, parametric studies for different dimensions and locations of RLC soil were conducted. The results show that the soil arching effect that is due to the inclusion of RLC soil works well initially to reduce the load but eventually disappears, which can result in a significant load rebound greater than 100 kPa and jeopardize the stability of the HFCCT.
    • Download: (2.414Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evolution of Load Reduction for High-Filled Cut-and-Cover Tunnels Subjected to Soil Creep

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272191
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorSheng Li
    contributor authorYuchi Jianie
    contributor authorI-Hsuan Ho
    contributor authorLi Ma
    contributor authorBentian Yu
    contributor authorChangdan Wang
    date accessioned2022-02-01T21:52:00Z
    date available2022-02-01T21:52:00Z
    date issued9/1/2021
    identifier other%28ASCE%29GM.1943-5622.0002089.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272191
    description abstractThe excessive load from the high embankments of high-filled cut-and-cover tunnels (HFCCTs) threatens the safety and stability of HFCCTs. Relatively low-compacted (RLC) soil can reduce such loads in the short term, but the long-term ability of RLC soil to reduce the load on HFCCTs is unknown. The changes in the soil arching effect that are resulted from soil creep needs to be considered carefully in HFCCT design. Three stages of analysis were conducted in this study: immediately after backfilling (0 month), during backfill creep, and after the soil deformation has stabilized (240 months/20 years). A finite difference program, FLAC3D, was employed to investigate the soil’s vertical earth pressure and displacement distribution around a cut-and-cover tunnel (CCT). The Burgers model was used to simulate the creep behavior of the soil. In addition, parametric studies for different dimensions and locations of RLC soil were conducted. The results show that the soil arching effect that is due to the inclusion of RLC soil works well initially to reduce the load but eventually disappears, which can result in a significant load rebound greater than 100 kPa and jeopardize the stability of the HFCCT.
    publisherASCE
    titleEvolution of Load Reduction for High-Filled Cut-and-Cover Tunnels Subjected to Soil Creep
    typeJournal Paper
    journal volume21
    journal issue9
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002089
    journal fristpage04021172-1
    journal lastpage04021172-11
    page11
    treeInternational Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian