YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Constructing Quasi-Site-Specific Multivariate Probability Distribution Using Hierarchical Bayesian Model

    Source: Journal of Engineering Mechanics:;2021:;Volume ( 147 ):;issue: 010::page 04021069-1
    Author:
    Jianye Ching
    ,
    Stephen Wu
    ,
    Kok-Kwang Phoon
    DOI: 10.1061/(ASCE)EM.1943-7889.0001964
    Publisher: ASCE
    Abstract: In geotechnical engineering, it is challenging to construct a site-specific multivariate probability distribution model for soil/rock properties because the site-specific data are usually sparse and incomplete. In contrast, there are abundant generic soil/rock data in the literature for the construction of a generic multivariate probability distribution model, but this model is typically biased and/or imprecise for a specific site. A hybridization method has been proposed to combine these two sources of soil/rock data (site-specific data and a generic database) to produce a quasi-site-specific model, but this method is essentially heuristic. In the current paper, a more rational method that exploits the geologic origin of soil/rock data is proposed. There is a tendency for data to be more similar within a single site and less similar between sites. This is called site uniqueness in geotechnical engineering practice, but no data-driven methods exist to quantify this data feature currently. The hierarchical Bayesian model (HBM) is a natural model to exploit this group information. The grouping criterion can be site localization, soil/rock types, or others. This paper only studies the group criterion based on site localization. This means that a generic database is now viewed as a collection of data groups labeled by qualitative site labels. This site label does not contain any quantitative information such as GPS location, it merely demarcates each group as distinct. The novel contribution is the development of an efficient HBM with closed-form conditional probabilities based on suitably chosen conjugate priors that can handle multivariate, uncertain and unique, sparse, incomplete, and potentially corrupted (MUSIC) data containing site labels. Numerical comparisons between the hybridization method (which cannot incorporate group information) and HBM show that even the simple qualitative knowledge that data belong to a geographically constrained site can improve the estimation of soil/rock properties. The GPS location of each site is not needed.
    • Download: (3.810Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Constructing Quasi-Site-Specific Multivariate Probability Distribution Using Hierarchical Bayesian Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272113
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorJianye Ching
    contributor authorStephen Wu
    contributor authorKok-Kwang Phoon
    date accessioned2022-02-01T21:49:44Z
    date available2022-02-01T21:49:44Z
    date issued10/1/2021
    identifier other%28ASCE%29EM.1943-7889.0001964.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272113
    description abstractIn geotechnical engineering, it is challenging to construct a site-specific multivariate probability distribution model for soil/rock properties because the site-specific data are usually sparse and incomplete. In contrast, there are abundant generic soil/rock data in the literature for the construction of a generic multivariate probability distribution model, but this model is typically biased and/or imprecise for a specific site. A hybridization method has been proposed to combine these two sources of soil/rock data (site-specific data and a generic database) to produce a quasi-site-specific model, but this method is essentially heuristic. In the current paper, a more rational method that exploits the geologic origin of soil/rock data is proposed. There is a tendency for data to be more similar within a single site and less similar between sites. This is called site uniqueness in geotechnical engineering practice, but no data-driven methods exist to quantify this data feature currently. The hierarchical Bayesian model (HBM) is a natural model to exploit this group information. The grouping criterion can be site localization, soil/rock types, or others. This paper only studies the group criterion based on site localization. This means that a generic database is now viewed as a collection of data groups labeled by qualitative site labels. This site label does not contain any quantitative information such as GPS location, it merely demarcates each group as distinct. The novel contribution is the development of an efficient HBM with closed-form conditional probabilities based on suitably chosen conjugate priors that can handle multivariate, uncertain and unique, sparse, incomplete, and potentially corrupted (MUSIC) data containing site labels. Numerical comparisons between the hybridization method (which cannot incorporate group information) and HBM show that even the simple qualitative knowledge that data belong to a geographically constrained site can improve the estimation of soil/rock properties. The GPS location of each site is not needed.
    publisherASCE
    titleConstructing Quasi-Site-Specific Multivariate Probability Distribution Using Hierarchical Bayesian Model
    typeJournal Paper
    journal volume147
    journal issue10
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001964
    journal fristpage04021069-1
    journal lastpage04021069-18
    page18
    treeJournal of Engineering Mechanics:;2021:;Volume ( 147 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian