YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Coupled Experimental and Computational Investigation of the Interplay between Discrete and Continuous Reinforcement in Ultrahigh Performance Concrete Beams. I: Experimental Testing

    Source: Journal of Engineering Mechanics:;2021:;Volume ( 147 ):;issue: 009::page 04021049-1
    Author:
    Shady Gomaa
    ,
    Tathagata Bhaduri
    ,
    Mohammed Alnaggar
    DOI: 10.1061/(ASCE)EM.1943-7889.0001948
    Publisher: ASCE
    Abstract: Ultrahigh performance concrete (UHPC) is a special class of cementitious composites with superior strength and durability characteristics. Typically, UHPC contains very fine aggregate (size less than 1 mm) and short fiber reinforcement (less than 15 mm long). This sets it apart from the family of regular fiber-reinforced concrete (FRC) that has aggregate and fiber of similar lengths since the aggregate is typically coarse (10–20 mm) and that makes fiber effects on heterogeneity and crack bridging in UHPC more dominant compared to FRC. Additionally, since fiber content is relatively high (around 2% by volume), it is expected that a significant interplay exists between fiber content and traditional continuous reinforcement (rebars). Such interplay could affect the modes of failure, load-carrying capacity, and ductility of reinforced-UHPC (R-UHPC) members. Given such differences, prediction of failure mechanisms for R-UHPC members via extrapolation of design guides available for normal concrete (NC) and FRC could be debatable. Therefore, this two-part study discusses a coupled experimental and computational investigation analyzing the effect of fiber-rebar interplay on the modes of failure, strength, and ductility of R-UHPC prismatic members. The experiments included an initial campaign of testing 12 R-UHPC beams with different fiber contents and reinforcement ratios. Beams were tested with an eccentric three-point bending setup along with material level companion tests on specimens cast from same batches. Interestingly, all beams with fiber failed in bending without noticeable shear failures. The data from this initial campaign were used to calibrate and validate a computational modeling framework. This validated model was further used to predict the needed dimensions to achieve shear failure. Given these dimensions, a second experimental campaign was performed, and all tested beams failed in shear as predicted. These experimental programs are reported in the present Part I. The computational counterpart is described in the companion paper as Part II.
    • Download: (3.938Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Coupled Experimental and Computational Investigation of the Interplay between Discrete and Continuous Reinforcement in Ultrahigh Performance Concrete Beams. I: Experimental Testing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272098
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorShady Gomaa
    contributor authorTathagata Bhaduri
    contributor authorMohammed Alnaggar
    date accessioned2022-02-01T21:49:19Z
    date available2022-02-01T21:49:19Z
    date issued9/1/2021
    identifier other%28ASCE%29EM.1943-7889.0001948.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272098
    description abstractUltrahigh performance concrete (UHPC) is a special class of cementitious composites with superior strength and durability characteristics. Typically, UHPC contains very fine aggregate (size less than 1 mm) and short fiber reinforcement (less than 15 mm long). This sets it apart from the family of regular fiber-reinforced concrete (FRC) that has aggregate and fiber of similar lengths since the aggregate is typically coarse (10–20 mm) and that makes fiber effects on heterogeneity and crack bridging in UHPC more dominant compared to FRC. Additionally, since fiber content is relatively high (around 2% by volume), it is expected that a significant interplay exists between fiber content and traditional continuous reinforcement (rebars). Such interplay could affect the modes of failure, load-carrying capacity, and ductility of reinforced-UHPC (R-UHPC) members. Given such differences, prediction of failure mechanisms for R-UHPC members via extrapolation of design guides available for normal concrete (NC) and FRC could be debatable. Therefore, this two-part study discusses a coupled experimental and computational investigation analyzing the effect of fiber-rebar interplay on the modes of failure, strength, and ductility of R-UHPC prismatic members. The experiments included an initial campaign of testing 12 R-UHPC beams with different fiber contents and reinforcement ratios. Beams were tested with an eccentric three-point bending setup along with material level companion tests on specimens cast from same batches. Interestingly, all beams with fiber failed in bending without noticeable shear failures. The data from this initial campaign were used to calibrate and validate a computational modeling framework. This validated model was further used to predict the needed dimensions to achieve shear failure. Given these dimensions, a second experimental campaign was performed, and all tested beams failed in shear as predicted. These experimental programs are reported in the present Part I. The computational counterpart is described in the companion paper as Part II.
    publisherASCE
    titleCoupled Experimental and Computational Investigation of the Interplay between Discrete and Continuous Reinforcement in Ultrahigh Performance Concrete Beams. I: Experimental Testing
    typeJournal Paper
    journal volume147
    journal issue9
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0001948
    journal fristpage04021049-1
    journal lastpage04021049-13
    page13
    treeJournal of Engineering Mechanics:;2021:;Volume ( 147 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian