YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Calcination Conditions on MnOx/Al2O3 Catalytic Efficiency for NO Oxidation

    Source: Journal of Environmental Engineering:;2021:;Volume ( 147 ):;issue: 010::page 04021039-1
    Author:
    Denghui Wang
    ,
    Hui Li
    ,
    Ning Dong
    ,
    Shien Hui
    DOI: 10.1061/(ASCE)EE.1943-7870.0001914
    Publisher: ASCE
    Abstract: Calcination conditions in the catalyst preparation process have a significant influence on catalyst performance. To explore the optimal calcination condition of MnOx/Al2O3 catalysts for NO oxidation, a series of samples was prepared using the same support and active compound but under different calcination conditions. The catalytic efficiency of the catalyst was tested, and through characterization [X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE SEM), Brunauer–Emmett–Teller analysis (BET), and Barrett–Joyner–Halenda analysis (BJH)], the effect of calcination conditions on the catalytic performance was analyzed and discussed. The results showed that the samples calcined at 600°C for 5 h had the best catalytic performance. At a reaction temperature of 450°C, the molar ratio of NO2/NO conversion was as much as 1.65. The high surface area, crystal phase, and crystallinity (the relative content of Mn2O3 is about 50%); the high content of lattice oxygen Oβ (about 20.4%); and high dispersion of active sites on the MnOx/Al2O3 catalyst calcined at 600°C for 5 h led to its relatively high catalytic activity. Compared with traditional noble metal catalysts, the MnOx/Al2O3 catalyst prepared by the impregnation method has good application prospects because of its low material cost, simple preparation process, and superior catalytic performance.
    • Download: (10.68Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Calcination Conditions on MnOx/Al2O3 Catalytic Efficiency for NO Oxidation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272076
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorDenghui Wang
    contributor authorHui Li
    contributor authorNing Dong
    contributor authorShien Hui
    date accessioned2022-02-01T21:48:40Z
    date available2022-02-01T21:48:40Z
    date issued10/1/2021
    identifier other%28ASCE%29EE.1943-7870.0001914.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272076
    description abstractCalcination conditions in the catalyst preparation process have a significant influence on catalyst performance. To explore the optimal calcination condition of MnOx/Al2O3 catalysts for NO oxidation, a series of samples was prepared using the same support and active compound but under different calcination conditions. The catalytic efficiency of the catalyst was tested, and through characterization [X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE SEM), Brunauer–Emmett–Teller analysis (BET), and Barrett–Joyner–Halenda analysis (BJH)], the effect of calcination conditions on the catalytic performance was analyzed and discussed. The results showed that the samples calcined at 600°C for 5 h had the best catalytic performance. At a reaction temperature of 450°C, the molar ratio of NO2/NO conversion was as much as 1.65. The high surface area, crystal phase, and crystallinity (the relative content of Mn2O3 is about 50%); the high content of lattice oxygen Oβ (about 20.4%); and high dispersion of active sites on the MnOx/Al2O3 catalyst calcined at 600°C for 5 h led to its relatively high catalytic activity. Compared with traditional noble metal catalysts, the MnOx/Al2O3 catalyst prepared by the impregnation method has good application prospects because of its low material cost, simple preparation process, and superior catalytic performance.
    publisherASCE
    titleEffect of Calcination Conditions on MnOx/Al2O3 Catalytic Efficiency for NO Oxidation
    typeJournal Paper
    journal volume147
    journal issue10
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0001914
    journal fristpage04021039-1
    journal lastpage04021039-11
    page11
    treeJournal of Environmental Engineering:;2021:;Volume ( 147 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian