YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interactive and Immersive Process-Level Digital Twin for Collaborative Human–Robot Construction Work

    Source: Journal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 006::page 04021023-1
    Author:
    Xi Wang
    ,
    Ci-Jyun Liang
    ,
    Carol C. Menassa
    ,
    Vineet R. Kamat
    DOI: 10.1061/(ASCE)CP.1943-5487.0000988
    Publisher: ASCE
    Abstract: Human cognition plays a critical role in construction work, particularly in the context of high-level task planning and in-field improvisation. On the other hand, robots are adept at performing numerical computation and repetitive physical tasks with precise motion control. The unstructured and complex nature of construction environments and the inability to maintain tight tolerances in assembled workpieces pose several unique challenges to the wide application of robots in construction work. Thus, the robotization of field construction processes is best conceived as a collaborative human–robot endeavor that takes advantage of both human and robot intelligence as well as robots’ physical operation capabilities to overcome uncertainties and successfully perform useful construction work onsite. This paper proposes an interactive and immersive process-level digital twin (I2PL-DT) system in virtual reality (VR) that integrates visualization and supervision, task planning and execution, and bidirectional communication to enable collaborative human–robot construction work. In this work paradigm, the human worker is responsible for high-level task planning and work process supervision. The robot undertakes workspace sensing and monitoring, detailed motion planning, and physical execution of the work. A drywall installation case study involving imperfect rough carpentry (wall framing) is presented using a KUKA mobile industrial robotic arm emulator. A human-in-the-loop study involving 20 subjects was conducted for system verification and to collect feedback for future improvements. The experimental results show that users can use the system to specify work sequences, select optimal task plans, and perform robot trajectory guidance after simple training and felt positive about the system functions and user experience. The system demonstrates the potential of transitioning the role of construction workers from physical task performers to robot supervisors. In addition, the system establishes a promising framework for construction workers to remotely collaborate with onsite construction robots.
    • Download: (2.336Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interactive and Immersive Process-Level Digital Twin for Collaborative Human–Robot Construction Work

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272047
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorXi Wang
    contributor authorCi-Jyun Liang
    contributor authorCarol C. Menassa
    contributor authorVineet R. Kamat
    date accessioned2022-02-01T21:47:54Z
    date available2022-02-01T21:47:54Z
    date issued11/1/2021
    identifier other%28ASCE%29CP.1943-5487.0000988.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272047
    description abstractHuman cognition plays a critical role in construction work, particularly in the context of high-level task planning and in-field improvisation. On the other hand, robots are adept at performing numerical computation and repetitive physical tasks with precise motion control. The unstructured and complex nature of construction environments and the inability to maintain tight tolerances in assembled workpieces pose several unique challenges to the wide application of robots in construction work. Thus, the robotization of field construction processes is best conceived as a collaborative human–robot endeavor that takes advantage of both human and robot intelligence as well as robots’ physical operation capabilities to overcome uncertainties and successfully perform useful construction work onsite. This paper proposes an interactive and immersive process-level digital twin (I2PL-DT) system in virtual reality (VR) that integrates visualization and supervision, task planning and execution, and bidirectional communication to enable collaborative human–robot construction work. In this work paradigm, the human worker is responsible for high-level task planning and work process supervision. The robot undertakes workspace sensing and monitoring, detailed motion planning, and physical execution of the work. A drywall installation case study involving imperfect rough carpentry (wall framing) is presented using a KUKA mobile industrial robotic arm emulator. A human-in-the-loop study involving 20 subjects was conducted for system verification and to collect feedback for future improvements. The experimental results show that users can use the system to specify work sequences, select optimal task plans, and perform robot trajectory guidance after simple training and felt positive about the system functions and user experience. The system demonstrates the potential of transitioning the role of construction workers from physical task performers to robot supervisors. In addition, the system establishes a promising framework for construction workers to remotely collaborate with onsite construction robots.
    publisherASCE
    titleInteractive and Immersive Process-Level Digital Twin for Collaborative Human–Robot Construction Work
    typeJournal Paper
    journal volume35
    journal issue6
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000988
    journal fristpage04021023-1
    journal lastpage04021023-19
    page19
    treeJournal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian