YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Instance Segmentation of Industrial Point Cloud Data

    Source: Journal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 006::page 04021022-1
    Author:
    Eva Agapaki
    ,
    Ioannis Brilakis
    DOI: 10.1061/(ASCE)CP.1943-5487.0000972
    Publisher: ASCE
    Abstract: The challenge that this paper addresses is how to efficiently minimize the cost and manual labor for automatically generating object oriented geometric digital twins (gDTs) of industrial facilities, so that the benefits provide even more value compared to the initial investment to generate these models. Our previous work achieved the current state-of-the-art class segmentation performance (75% average accuracy per point and average area under the ROC curve, AUC, 90% in the CLOI dataset classes) and directly produces labelled point clusters of the most important to model objects (CLOI classes) from laser scanned industrial data. CLOI stands for C-shapes, L-shapes, O-shapes, I-shapes and their combinations. However, the problem of automated segmentation of individual instances that can then be used to fit geometric shapes remains unsolved. We argue that the use of instance segmentation algorithms has the theoretical potential to provide the output needed for the generation of gDTs. We solve instance segmentation in this paper through (1) using a CLOI-Instance graph connectivity algorithm that segments the point clusters of an object class into instances, and (2) boundary segmentation of points that improves Step 1. Our method was tested on the CLOI benchmark dataset and segmented instances with 76.25% average precision and 70% average recall per point among all classes. This proved that it is the first to automatically segment industrial point cloud shapes with no prior knowledge other than the class point label and is the bedrock for efficient gDT generation in cluttered industrial point clouds.
    • Download: (12.68Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Instance Segmentation of Industrial Point Cloud Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4272036
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorEva Agapaki
    contributor authorIoannis Brilakis
    date accessioned2022-02-01T21:47:27Z
    date available2022-02-01T21:47:27Z
    date issued11/1/2021
    identifier other%28ASCE%29CP.1943-5487.0000972.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272036
    description abstractThe challenge that this paper addresses is how to efficiently minimize the cost and manual labor for automatically generating object oriented geometric digital twins (gDTs) of industrial facilities, so that the benefits provide even more value compared to the initial investment to generate these models. Our previous work achieved the current state-of-the-art class segmentation performance (75% average accuracy per point and average area under the ROC curve, AUC, 90% in the CLOI dataset classes) and directly produces labelled point clusters of the most important to model objects (CLOI classes) from laser scanned industrial data. CLOI stands for C-shapes, L-shapes, O-shapes, I-shapes and their combinations. However, the problem of automated segmentation of individual instances that can then be used to fit geometric shapes remains unsolved. We argue that the use of instance segmentation algorithms has the theoretical potential to provide the output needed for the generation of gDTs. We solve instance segmentation in this paper through (1) using a CLOI-Instance graph connectivity algorithm that segments the point clusters of an object class into instances, and (2) boundary segmentation of points that improves Step 1. Our method was tested on the CLOI benchmark dataset and segmented instances with 76.25% average precision and 70% average recall per point among all classes. This proved that it is the first to automatically segment industrial point cloud shapes with no prior knowledge other than the class point label and is the bedrock for efficient gDT generation in cluttered industrial point clouds.
    publisherASCE
    titleInstance Segmentation of Industrial Point Cloud Data
    typeJournal Paper
    journal volume35
    journal issue6
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000972
    journal fristpage04021022-1
    journal lastpage04021022-24
    page24
    treeJournal of Computing in Civil Engineering:;2021:;Volume ( 035 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian