YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large-Scale Visual Data–Driven Probabilistic Risk Assessment of Utility Poles Regarding the Vulnerability of Power Distribution Infrastructure Systems

    Source: Journal of Construction Engineering and Management:;2021:;Volume ( 147 ):;issue: 010::page 04021121-1
    Author:
    Jaeyoon Kim
    ,
    Mirsalar Kamari
    ,
    Seulbi Lee
    ,
    Youngjib Ham
    DOI: 10.1061/(ASCE)CO.1943-7862.0002153
    Publisher: ASCE
    Abstract: Inspecting and assessing existing utility poles has become increasingly important for reducing the vulnerability of power distribution infrastructure systems in disaster situations, which can enhance community resilience. Although vision-based systems have been applied to detect faults in power distribution infrastructures, little research currently exists on assessing component- and network-level failures of utility poles based on their geometric and environmental information. This paper aims to propose a new data-driven approach to support risk-informed decision-making for utility maintenance under extreme wind conditions. Large-scale open-source imagery from Google Street View is used to assess geometric properties of utility poles (i.e., leaning angle). Then the failure probability of utility poles is analyzed under varying conditions (e.g., age, leaning angle, and wind loads) in a three-dimensional virtual city model. The proposed method is tested through case studies in Texas to (1) validate an algorithm for estimating leaning angles of utility poles and (2) understand the progress of failures of leaning utility poles from a network perspective. The outcomes of the case studies demonstrate that the proposed method has the potential to leverage large-scale open-source visual data to assess the vulnerability of utility pole networks that may lead to cascading failures in power distribution infrastructure systems. Based on the proposed virtual environment, the method is expected to enable practitioners to facilitate risk-informed decision-making against disaster situations, which creates an opportunity for prioritizing maintenance tasks regarding power distribution infrastructures.
    • Download: (2.294Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large-Scale Visual Data–Driven Probabilistic Risk Assessment of Utility Poles Regarding the Vulnerability of Power Distribution Infrastructure Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271999
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorJaeyoon Kim
    contributor authorMirsalar Kamari
    contributor authorSeulbi Lee
    contributor authorYoungjib Ham
    date accessioned2022-02-01T21:46:15Z
    date available2022-02-01T21:46:15Z
    date issued10/1/2021
    identifier other%28ASCE%29CO.1943-7862.0002153.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271999
    description abstractInspecting and assessing existing utility poles has become increasingly important for reducing the vulnerability of power distribution infrastructure systems in disaster situations, which can enhance community resilience. Although vision-based systems have been applied to detect faults in power distribution infrastructures, little research currently exists on assessing component- and network-level failures of utility poles based on their geometric and environmental information. This paper aims to propose a new data-driven approach to support risk-informed decision-making for utility maintenance under extreme wind conditions. Large-scale open-source imagery from Google Street View is used to assess geometric properties of utility poles (i.e., leaning angle). Then the failure probability of utility poles is analyzed under varying conditions (e.g., age, leaning angle, and wind loads) in a three-dimensional virtual city model. The proposed method is tested through case studies in Texas to (1) validate an algorithm for estimating leaning angles of utility poles and (2) understand the progress of failures of leaning utility poles from a network perspective. The outcomes of the case studies demonstrate that the proposed method has the potential to leverage large-scale open-source visual data to assess the vulnerability of utility pole networks that may lead to cascading failures in power distribution infrastructure systems. Based on the proposed virtual environment, the method is expected to enable practitioners to facilitate risk-informed decision-making against disaster situations, which creates an opportunity for prioritizing maintenance tasks regarding power distribution infrastructures.
    publisherASCE
    titleLarge-Scale Visual Data–Driven Probabilistic Risk Assessment of Utility Poles Regarding the Vulnerability of Power Distribution Infrastructure Systems
    typeJournal Paper
    journal volume147
    journal issue10
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0002153
    journal fristpage04021121-1
    journal lastpage04021121-13
    page13
    treeJournal of Construction Engineering and Management:;2021:;Volume ( 147 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian