YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Traffic Volume Detection Using Infrastructure-Based LiDAR under Different Levels of Service Conditions

    Source: Journal of Transportation Engineering, Part A: Systems:;2021:;Volume ( 147 ):;issue: 011::page 04021080-1
    Author:
    Junxuan Zhao
    ,
    Hao Xu
    ,
    Yibin Zhang
    ,
    Yuan Tian
    ,
    Hongchao Liu
    DOI: 10.1061/JTEPBS.0000595
    Publisher: ASCE
    Abstract: Light detection and ranging (LiDAR) technology is a key component of an autonomous vehicle’s sensing system. It also has the potential to be used at the roadside as a major infrastructure-based detection for connected and autonomous traffic infrastructure systems, as well as for the general purpose of traffic data collection and performance evaluation. Lane and movement-based traffic volume data collection is a basic function of roadside traffic sensing systems. The accuracy of volume detection is mainly impacted by occlusion for most of the advanced traffic sensing technologies, such as LiDAR, video, and radar. This paper presents research results to quantify the influence of occlusion on LiDAR systems’ traffic volume detection in different traffic demand scenarios. A method for automatic identification and classification of LiDAR specific occlusion was first developed based on the inherent characteristics of LiDAR sensors, which can report occlusion ratios of roadside LiDAR data. Then, the study was extended to accommodate all traffic demand scenarios, traffic levels of service (LOS A to E), and different truck compositions (5% to 30%) by integrating the developed method and traffic simulation. Lastly, a comprehensive case study first verified the accuracy of the simulation results using field data collected from two testbeds, and then at the third testbed, a lane and movement-based traffic volume study was demonstrated. The practical significance of this paper is to help traffic engineers making informed decisions when considering LiDAR as their choice of sensing technology in the field from two aspects: (1) the quantitative relationship between expected occlusion rate and resulted detection accuracy under various traffic conditions; (2) lessons learned from the pilot field implementation on LiDAR, installation strategy, data storage, and communication.
    • Download: (1.646Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Traffic Volume Detection Using Infrastructure-Based LiDAR under Different Levels of Service Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271896
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorJunxuan Zhao
    contributor authorHao Xu
    contributor authorYibin Zhang
    contributor authorYuan Tian
    contributor authorHongchao Liu
    date accessioned2022-02-01T21:42:56Z
    date available2022-02-01T21:42:56Z
    date issued11/1/2021
    identifier otherJTEPBS.0000595.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271896
    description abstractLight detection and ranging (LiDAR) technology is a key component of an autonomous vehicle’s sensing system. It also has the potential to be used at the roadside as a major infrastructure-based detection for connected and autonomous traffic infrastructure systems, as well as for the general purpose of traffic data collection and performance evaluation. Lane and movement-based traffic volume data collection is a basic function of roadside traffic sensing systems. The accuracy of volume detection is mainly impacted by occlusion for most of the advanced traffic sensing technologies, such as LiDAR, video, and radar. This paper presents research results to quantify the influence of occlusion on LiDAR systems’ traffic volume detection in different traffic demand scenarios. A method for automatic identification and classification of LiDAR specific occlusion was first developed based on the inherent characteristics of LiDAR sensors, which can report occlusion ratios of roadside LiDAR data. Then, the study was extended to accommodate all traffic demand scenarios, traffic levels of service (LOS A to E), and different truck compositions (5% to 30%) by integrating the developed method and traffic simulation. Lastly, a comprehensive case study first verified the accuracy of the simulation results using field data collected from two testbeds, and then at the third testbed, a lane and movement-based traffic volume study was demonstrated. The practical significance of this paper is to help traffic engineers making informed decisions when considering LiDAR as their choice of sensing technology in the field from two aspects: (1) the quantitative relationship between expected occlusion rate and resulted detection accuracy under various traffic conditions; (2) lessons learned from the pilot field implementation on LiDAR, installation strategy, data storage, and communication.
    publisherASCE
    titleTraffic Volume Detection Using Infrastructure-Based LiDAR under Different Levels of Service Conditions
    typeJournal Paper
    journal volume147
    journal issue11
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000595
    journal fristpage04021080-1
    journal lastpage04021080-12
    page12
    treeJournal of Transportation Engineering, Part A: Systems:;2021:;Volume ( 147 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian