YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Deformation Evolution and Failure Mechanism of Monoclinic and Soft-Hard Interbedded Strata: Study of Muzhailing Tunnel

    Source: Journal of Performance of Constructed Facilities:;2021:;Volume ( 035 ):;issue: 005::page 04021042-1
    Author:
    Weiwei Liu
    ,
    Jianxun Chen
    ,
    Lijun Chen
    ,
    Yanbin Luo
    ,
    Zhou Shi
    ,
    Yunfei Wu
    DOI: 10.1061/(ASCE)CF.1943-5509.0001605
    Publisher: ASCE
    Abstract: The large deformation issue in soft rock mass is a worldwide difficulty that has puzzled tunnel engineering for a century and a half. Previous studies have mainly focused on a large deformation mechanism, prediction, and control of soft rock with single lithology, while there are limited studies on the tunneling-induced large deformation in monoclinic and soft-hard interbedded rock strata. This paper studies the deformation law, evolution process, and failure mechanism of a tunnel excavated in monoclinic and soft-hard interbedded rock mass by onsite measurements in the No. 3 inclined shaft of the Muzhailing Tunnel, which is a key control project of the Lanzhou-Haikou National Expressway. The achieved results indicated that the tunnel deformation was characterized by significant asymmetry, the maximum deformation in the cross section was observed to occur in the normal direction of the bedding plane, and the side of the larger deformation was consistent with the dip direction of the strata. The vertical displacements were greater than the horizontal displacements except for the right foot of the middle bench, and the primary lining at the upper left of the tunnel had intruded into the space of the secondary lining and had to be demolished and reconstructed. The displacement speed and amount mostly reached the peak in the construction stage of the middle bench, and its displacement amount accounted for about half of the total displacement. The spatiotemporal curves of large deformation could be divided into four stages according to the excavation time and the distance from the tunnel face. Two types of exponential functions were used to fit and predict the tunnel displacement, which displayed good applicability. The disaster evolution process of large deformations was summarized into five stages on a macro scale: premise, gestation, development (including four substages), occurrence, and treatment of large deformation. The failure mechanism of monoclinic and soft-hard interbedded rock mass is mainly the bending-tensile failure of thin-layered strata.
    • Download: (1.615Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Deformation Evolution and Failure Mechanism of Monoclinic and Soft-Hard Interbedded Strata: Study of Muzhailing Tunnel

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271848
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorWeiwei Liu
    contributor authorJianxun Chen
    contributor authorLijun Chen
    contributor authorYanbin Luo
    contributor authorZhou Shi
    contributor authorYunfei Wu
    date accessioned2022-02-01T21:41:24Z
    date available2022-02-01T21:41:24Z
    date issued10/1/2021
    identifier other%28ASCE%29CF.1943-5509.0001605.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271848
    description abstractThe large deformation issue in soft rock mass is a worldwide difficulty that has puzzled tunnel engineering for a century and a half. Previous studies have mainly focused on a large deformation mechanism, prediction, and control of soft rock with single lithology, while there are limited studies on the tunneling-induced large deformation in monoclinic and soft-hard interbedded rock strata. This paper studies the deformation law, evolution process, and failure mechanism of a tunnel excavated in monoclinic and soft-hard interbedded rock mass by onsite measurements in the No. 3 inclined shaft of the Muzhailing Tunnel, which is a key control project of the Lanzhou-Haikou National Expressway. The achieved results indicated that the tunnel deformation was characterized by significant asymmetry, the maximum deformation in the cross section was observed to occur in the normal direction of the bedding plane, and the side of the larger deformation was consistent with the dip direction of the strata. The vertical displacements were greater than the horizontal displacements except for the right foot of the middle bench, and the primary lining at the upper left of the tunnel had intruded into the space of the secondary lining and had to be demolished and reconstructed. The displacement speed and amount mostly reached the peak in the construction stage of the middle bench, and its displacement amount accounted for about half of the total displacement. The spatiotemporal curves of large deformation could be divided into four stages according to the excavation time and the distance from the tunnel face. Two types of exponential functions were used to fit and predict the tunnel displacement, which displayed good applicability. The disaster evolution process of large deformations was summarized into five stages on a macro scale: premise, gestation, development (including four substages), occurrence, and treatment of large deformation. The failure mechanism of monoclinic and soft-hard interbedded rock mass is mainly the bending-tensile failure of thin-layered strata.
    publisherASCE
    titleDeformation Evolution and Failure Mechanism of Monoclinic and Soft-Hard Interbedded Strata: Study of Muzhailing Tunnel
    typeJournal Paper
    journal volume35
    journal issue5
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0001605
    journal fristpage04021042-1
    journal lastpage04021042-16
    page16
    treeJournal of Performance of Constructed Facilities:;2021:;Volume ( 035 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian