YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantifying and Incorporating the Benefits of Wicking Geotextile into Pavement Design

    Source: Journal of Transportation Engineering, Part B: Pavements:;2021:;Volume ( 147 ):;issue: 003::page 04021044-1
    Author:
    Chuang Lin
    ,
    Javad Galinmoghadam
    ,
    Jie Han
    ,
    Jenny Liu
    ,
    Xiong Zhang
    DOI: 10.1061/JPEODX.0000300
    Publisher: ASCE
    Abstract: Geotextiles have been widely used in pavement systems for reinforcing base and subgrade layers. However, the capillary break effect minimizes the benefits of reinforcement due to excess pore-water pressure accumulation at the soil–geotextile interface. In contrast, the wicking geotextile has the ability to provide superior lateral drainage ability and overcome the limitations of nonwicking geotextiles. Both field and laboratory tests have proven the efficiency of the wicking geotextile to dehydrate road embankments. However, the benefits of wicking geotextiles have not been considered in the existing pavement design methods. This paper aims at comparing the drainage performance of pavement structures without any reinforcement, with a nonwicking geotextile, and with the wicking geotextile. Firstly, a coupled hydromechanical model is proposed to predict pavement performance under saturated and unsaturated conditions. The effective resilient modulus data were obtained from the numerical model, and the methodologies of incorporating the benefits of the geotextiles into the design guides are discussed in detail. Simulation results indicated that by using the wicking geotextile, the thickness of the base course could be reduced by nearly 50% based on a standard US design guide, and the rutting depth reduced by 35% according to a standard pavement design guide. However, the nonwicking woven geotextile caused a detrimental effect to the pavement structure due to the capillary break effect, especially in a situation with a shallow water table.
    • Download: (1.830Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantifying and Incorporating the Benefits of Wicking Geotextile into Pavement Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271829
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorChuang Lin
    contributor authorJavad Galinmoghadam
    contributor authorJie Han
    contributor authorJenny Liu
    contributor authorXiong Zhang
    date accessioned2022-02-01T21:40:46Z
    date available2022-02-01T21:40:46Z
    date issued9/1/2021
    identifier otherJPEODX.0000300.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271829
    description abstractGeotextiles have been widely used in pavement systems for reinforcing base and subgrade layers. However, the capillary break effect minimizes the benefits of reinforcement due to excess pore-water pressure accumulation at the soil–geotextile interface. In contrast, the wicking geotextile has the ability to provide superior lateral drainage ability and overcome the limitations of nonwicking geotextiles. Both field and laboratory tests have proven the efficiency of the wicking geotextile to dehydrate road embankments. However, the benefits of wicking geotextiles have not been considered in the existing pavement design methods. This paper aims at comparing the drainage performance of pavement structures without any reinforcement, with a nonwicking geotextile, and with the wicking geotextile. Firstly, a coupled hydromechanical model is proposed to predict pavement performance under saturated and unsaturated conditions. The effective resilient modulus data were obtained from the numerical model, and the methodologies of incorporating the benefits of the geotextiles into the design guides are discussed in detail. Simulation results indicated that by using the wicking geotextile, the thickness of the base course could be reduced by nearly 50% based on a standard US design guide, and the rutting depth reduced by 35% according to a standard pavement design guide. However, the nonwicking woven geotextile caused a detrimental effect to the pavement structure due to the capillary break effect, especially in a situation with a shallow water table.
    publisherASCE
    titleQuantifying and Incorporating the Benefits of Wicking Geotextile into Pavement Design
    typeJournal Paper
    journal volume147
    journal issue3
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.0000300
    journal fristpage04021044-1
    journal lastpage04021044-12
    page12
    treeJournal of Transportation Engineering, Part B: Pavements:;2021:;Volume ( 147 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian