YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation and Modeling of FRP–Concrete Joint Bond Strength Based on Failure Depth

    Source: Journal of Composites for Construction:;2021:;Volume ( 025 ):;issue: 006::page 04021050-1
    Author:
    Behnaz Arefian
    ,
    Davood Mostofinejad
    DOI: 10.1061/(ASCE)CC.1943-5614.0001161
    Publisher: ASCE
    Abstract: The growing interest in fiber-reinforced polymer (FRP) composites in recent years for use in strengthening concrete structures bears witness to their efficiency and ease of use. A major issue in FRP strengthening designs, however, is the determination of the bond strength (ultimate load capacity) of the FRP strips, which is quite dependent on their debonding off the concrete substrate. Identification of the major parameters involved in the FRP–concrete bond capacity forms an important step toward its prediction. The parameters commonly considered in previous models include the geometric and mechanical properties of FRP sheets as well as the properties of both the concrete and the adhesive material used as determinants of bond strength. The present study, however, explores the additional parameter of cement-to-aggregate weight ratio for its effect on the failure plane. In the experimental phase of the study, a wide range of FRP strips is used in three different series of concrete specimens to investigate the failure plane in each. Based on the post-test conditions of the specimens, a novel method is adopted for the first time to measure the failure depth of the externally bonded reinforcement (EBR) strengthening technique. Accordingly, the depth of the failure plane is expressed as a function of the cement-to-aggregates weight ratio. In the second phase, an analytical model is developed that draws upon interfacial fracture energy and in which failure depth is introduced as one of the parameters involved in interfacial fracture energy. The unknown parameters of the new model are then derived based on 196 specimens (85% of the data set) from the experimental results of the present study and the extracted data from previous studies. Finally, the model is validated against three existing well-known ones using 35 random specimens (15% of the data set) of the database to show the satisfactory performance of the proposed model.
    • Download: (1.094Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation and Modeling of FRP–Concrete Joint Bond Strength Based on Failure Depth

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271826
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorBehnaz Arefian
    contributor authorDavood Mostofinejad
    date accessioned2022-02-01T21:40:40Z
    date available2022-02-01T21:40:40Z
    date issued12/1/2021
    identifier other%28ASCE%29CC.1943-5614.0001161.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271826
    description abstractThe growing interest in fiber-reinforced polymer (FRP) composites in recent years for use in strengthening concrete structures bears witness to their efficiency and ease of use. A major issue in FRP strengthening designs, however, is the determination of the bond strength (ultimate load capacity) of the FRP strips, which is quite dependent on their debonding off the concrete substrate. Identification of the major parameters involved in the FRP–concrete bond capacity forms an important step toward its prediction. The parameters commonly considered in previous models include the geometric and mechanical properties of FRP sheets as well as the properties of both the concrete and the adhesive material used as determinants of bond strength. The present study, however, explores the additional parameter of cement-to-aggregate weight ratio for its effect on the failure plane. In the experimental phase of the study, a wide range of FRP strips is used in three different series of concrete specimens to investigate the failure plane in each. Based on the post-test conditions of the specimens, a novel method is adopted for the first time to measure the failure depth of the externally bonded reinforcement (EBR) strengthening technique. Accordingly, the depth of the failure plane is expressed as a function of the cement-to-aggregates weight ratio. In the second phase, an analytical model is developed that draws upon interfacial fracture energy and in which failure depth is introduced as one of the parameters involved in interfacial fracture energy. The unknown parameters of the new model are then derived based on 196 specimens (85% of the data set) from the experimental results of the present study and the extracted data from previous studies. Finally, the model is validated against three existing well-known ones using 35 random specimens (15% of the data set) of the database to show the satisfactory performance of the proposed model.
    publisherASCE
    titleExperimental Investigation and Modeling of FRP–Concrete Joint Bond Strength Based on Failure Depth
    typeJournal Paper
    journal volume25
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001161
    journal fristpage04021050-1
    journal lastpage04021050-13
    page13
    treeJournal of Composites for Construction:;2021:;Volume ( 025 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian