YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Turbulence Spectrum Around a Suspended Cylinder with Vertical Endplate Effects to Enhance VIVACE Strength

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2021:;Volume ( 147 ):;issue: 005::page 04021024-1
    Author:
    Asim Kuila
    ,
    Subhasish Das
    ,
    Asis Mazumdar
    DOI: 10.1061/(ASCE)WW.1943-5460.0000662
    Publisher: ASCE
    Abstract: Alternating vortex formation on a horizontal suspended cylinder depends largely on flow turbulence causing its vibration. This vibration is known as “vortex-induced vibration” that leads to a power-harnessing device such as VIVACE, which was usually tested for high velocities (>1.3 m/s) and minimum 0.8 m flow depth. The present research provides feature flow field analysis around such VIVACE-like structures at only 0.17 m shallow waterway with a much lower velocity of ∼0.59 m/s. However, synchronization does not occur at such low water depth using a suspended cylinder only. Therefore, to overcome these conditions, behind that suspended cylinder of 0.04 m diameter (D), a 1.25D-wide vertical endplate was placed. The endplate was sensibly used here to further strengthen the induced vortex. Detailed analysis of the turbulent flow behaviors was done for different cylinder positions D/2, 1D, 3D/2, and 2D and locating the vertical endplate 2.25D away. The turbulence spectrum characteristics were studied from 3D velocity components, velocity vectors, Reynolds shear stresses, turbulence intensities, turbulence kinetic energy (TKE), its dissipation rate, and vorticity. The shear effect on the approach flow was inspected for different flow separation angles. The statistical parameters of velocity fluctuation moments of third-order skewness and TKE fluxes for longitudinal and vertical velocity were calculated in different lengths from the vertical endplate. Flow separation can be visualized from the three-directional velocity contours. Alternating vortex formation is identified from vorticity contours. The best vertical position of the cylinder was identified for which the induced vibration effect is enhanced for the combined effect of wake and horseshoe vortices developing between the cylinder and plate. This setup may be utilized as a hydrokinetic device similar to VIVACE in harnessing power from shallow waterways.
    • Download: (4.191Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Turbulence Spectrum Around a Suspended Cylinder with Vertical Endplate Effects to Enhance VIVACE Strength

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271753
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorAsim Kuila
    contributor authorSubhasish Das
    contributor authorAsis Mazumdar
    date accessioned2022-02-01T21:38:27Z
    date available2022-02-01T21:38:27Z
    date issued9/1/2021
    identifier other%28ASCE%29WW.1943-5460.0000662.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271753
    description abstractAlternating vortex formation on a horizontal suspended cylinder depends largely on flow turbulence causing its vibration. This vibration is known as “vortex-induced vibration” that leads to a power-harnessing device such as VIVACE, which was usually tested for high velocities (>1.3 m/s) and minimum 0.8 m flow depth. The present research provides feature flow field analysis around such VIVACE-like structures at only 0.17 m shallow waterway with a much lower velocity of ∼0.59 m/s. However, synchronization does not occur at such low water depth using a suspended cylinder only. Therefore, to overcome these conditions, behind that suspended cylinder of 0.04 m diameter (D), a 1.25D-wide vertical endplate was placed. The endplate was sensibly used here to further strengthen the induced vortex. Detailed analysis of the turbulent flow behaviors was done for different cylinder positions D/2, 1D, 3D/2, and 2D and locating the vertical endplate 2.25D away. The turbulence spectrum characteristics were studied from 3D velocity components, velocity vectors, Reynolds shear stresses, turbulence intensities, turbulence kinetic energy (TKE), its dissipation rate, and vorticity. The shear effect on the approach flow was inspected for different flow separation angles. The statistical parameters of velocity fluctuation moments of third-order skewness and TKE fluxes for longitudinal and vertical velocity were calculated in different lengths from the vertical endplate. Flow separation can be visualized from the three-directional velocity contours. Alternating vortex formation is identified from vorticity contours. The best vertical position of the cylinder was identified for which the induced vibration effect is enhanced for the combined effect of wake and horseshoe vortices developing between the cylinder and plate. This setup may be utilized as a hydrokinetic device similar to VIVACE in harnessing power from shallow waterways.
    publisherASCE
    titleTurbulence Spectrum Around a Suspended Cylinder with Vertical Endplate Effects to Enhance VIVACE Strength
    typeJournal Paper
    journal volume147
    journal issue5
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)WW.1943-5460.0000662
    journal fristpage04021024-1
    journal lastpage04021024-18
    page18
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2021:;Volume ( 147 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian