YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Field Measurements and Numerical Modeling of Hydraulic Transients in HDPE Pipeline with PRV Interaction

    Source: Journal of Hydraulic Engineering:;2021:;Volume ( 147 ):;issue: 006::page 04021018-1
    Author:
    Hao-Chen Yan
    ,
    Man-Yue Lam
    ,
    Joseph Hun-Wei Lee
    DOI: 10.1061/(ASCE)HY.1943-7900.0001873
    Publisher: ASCE
    Abstract: Pressure reducing valves (PRVs) and high-density polyethylene (HDPE) pipes are commonly used in urban water supply systems (UWSS). To study the joint effect of PRV and viscoelasticity on transient wave propagation, extensive experiments have been conducted in a field-scale reservoir-PRV-viscoelastic pipeline system covering a wide range of internal pressure heads (∼10  to  60   m) and air temperatures (12°C–33°C). In addition, a one-dimensional method of characteristics (MOC) based model that incorporates a PRV model and the generalized Kelvin-Voigt (K-V) model for pipe viscoelasticity is developed and validated against field data for the first time. The simulated transient pressures are in good agreement with field measurements. The K-V parameters exhibit a clustered distribution and the mean value for each element can provide a satisfactory simulation. The PRV in hydraulic transients can be interpreted as a quasi-dead-end with a self-adjusting opening, and causes additional positive pressure wave reflections that are gradually damped due to viscoelasticity. The dynamic changes in PRV opening, head loss, pressure wave reflection, and transmission induced by an incident pressure surge are predicted. Due to the joint action of PRV and pipeline viscoelasticity, the pressure oscillations in an intact pipe settle to a value that is considerably higher than the initial PRV set pressure. In a leaking pipe, the downstream pressure reverts to the original set pressure within a few wave cycles. Leaks can be detected by wave reflections in the time domain signals. The existence of leaks is also found to be associated with the the amplification and damping of the frequency response function (FRF) of the system at certain resonance peaks. This study provides new insights into wave propagation in HDPE pipeline with PRV interaction and an original data set for validation of leakage detection methods.
    • Download: (1.892Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Field Measurements and Numerical Modeling of Hydraulic Transients in HDPE Pipeline with PRV Interaction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271643
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorHao-Chen Yan
    contributor authorMan-Yue Lam
    contributor authorJoseph Hun-Wei Lee
    date accessioned2022-02-01T00:33:33Z
    date available2022-02-01T00:33:33Z
    date issued6/1/2021
    identifier other%28ASCE%29HY.1943-7900.0001873.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271643
    description abstractPressure reducing valves (PRVs) and high-density polyethylene (HDPE) pipes are commonly used in urban water supply systems (UWSS). To study the joint effect of PRV and viscoelasticity on transient wave propagation, extensive experiments have been conducted in a field-scale reservoir-PRV-viscoelastic pipeline system covering a wide range of internal pressure heads (∼10  to  60   m) and air temperatures (12°C–33°C). In addition, a one-dimensional method of characteristics (MOC) based model that incorporates a PRV model and the generalized Kelvin-Voigt (K-V) model for pipe viscoelasticity is developed and validated against field data for the first time. The simulated transient pressures are in good agreement with field measurements. The K-V parameters exhibit a clustered distribution and the mean value for each element can provide a satisfactory simulation. The PRV in hydraulic transients can be interpreted as a quasi-dead-end with a self-adjusting opening, and causes additional positive pressure wave reflections that are gradually damped due to viscoelasticity. The dynamic changes in PRV opening, head loss, pressure wave reflection, and transmission induced by an incident pressure surge are predicted. Due to the joint action of PRV and pipeline viscoelasticity, the pressure oscillations in an intact pipe settle to a value that is considerably higher than the initial PRV set pressure. In a leaking pipe, the downstream pressure reverts to the original set pressure within a few wave cycles. Leaks can be detected by wave reflections in the time domain signals. The existence of leaks is also found to be associated with the the amplification and damping of the frequency response function (FRF) of the system at certain resonance peaks. This study provides new insights into wave propagation in HDPE pipeline with PRV interaction and an original data set for validation of leakage detection methods.
    publisherASCE
    titleField Measurements and Numerical Modeling of Hydraulic Transients in HDPE Pipeline with PRV Interaction
    typeJournal Paper
    journal volume147
    journal issue6
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001873
    journal fristpage04021018-1
    journal lastpage04021018-16
    page16
    treeJournal of Hydraulic Engineering:;2021:;Volume ( 147 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian