YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Connection between Meteorological and Groundwater Drought with Copula-Based Bivariate Frequency Analysis

    Source: Journal of Hydrologic Engineering:;2021:;Volume ( 026 ):;issue: 007::page 05021015-1
    Author:
    Abhishek A. Pathak
    ,
    B. M. Dodamani
    DOI: 10.1061/(ASCE)HE.1943-5584.0002089
    Publisher: ASCE
    Abstract: Groundwater is a major resource of freshwater that provides additional resilience to agricultural drought during rainfall deficit and also helps in understanding the nature of the hydrological drought risk of an area. This study investigated the response of groundwater drought to meteorological drought and local aquifer properties by considering monthly groundwater levels of a tropical river basin in India. Further, bivariate frequency analysis was carried out for groundwater drought to develop severity–duration–frequency curves by considering the copula function. Long-term monthly groundwater levels were procured, and cluster analysis was performed on groundwater observations to classify the wells. Standardized Groundwater level Index (SGI) was used to evaluate groundwater drought for each cluster, and the same was compared with the meteorological drought of different association periods. The cluster analysis conveyed that wells can be grouped into three clusters optimally. Based on the comparison of groundwater drought with meteorological drought, it was inferred that SGI is well harmonized with the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) in humid and semiarid regions, respectively. Analysis of hydraulic diffusivity with the autocorrelation structure of SGI emphasizes the crucial role of aquifer characteristics in local groundwater droughts. The results of joint and conditional return periods obtained from bivariate frequency analysis conveyed that high severity and high-duration droughts were more frequent in the well of Clusters 1 as well as Cluster 3 and comparatively less for the well of Cluster 2. The outcome of the study will be helpful to design proactive drought mitigation and preparedness strategies by considering conjunctive use of surface and groundwater. It also provides a framework to evaluate groundwater drought risk in other parts of the world.
    • Download: (2.246Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Connection between Meteorological and Groundwater Drought with Copula-Based Bivariate Frequency Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271605
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorAbhishek A. Pathak
    contributor authorB. M. Dodamani
    date accessioned2022-02-01T00:32:33Z
    date available2022-02-01T00:32:33Z
    date issued7/1/2021
    identifier other%28ASCE%29HE.1943-5584.0002089.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271605
    description abstractGroundwater is a major resource of freshwater that provides additional resilience to agricultural drought during rainfall deficit and also helps in understanding the nature of the hydrological drought risk of an area. This study investigated the response of groundwater drought to meteorological drought and local aquifer properties by considering monthly groundwater levels of a tropical river basin in India. Further, bivariate frequency analysis was carried out for groundwater drought to develop severity–duration–frequency curves by considering the copula function. Long-term monthly groundwater levels were procured, and cluster analysis was performed on groundwater observations to classify the wells. Standardized Groundwater level Index (SGI) was used to evaluate groundwater drought for each cluster, and the same was compared with the meteorological drought of different association periods. The cluster analysis conveyed that wells can be grouped into three clusters optimally. Based on the comparison of groundwater drought with meteorological drought, it was inferred that SGI is well harmonized with the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) in humid and semiarid regions, respectively. Analysis of hydraulic diffusivity with the autocorrelation structure of SGI emphasizes the crucial role of aquifer characteristics in local groundwater droughts. The results of joint and conditional return periods obtained from bivariate frequency analysis conveyed that high severity and high-duration droughts were more frequent in the well of Clusters 1 as well as Cluster 3 and comparatively less for the well of Cluster 2. The outcome of the study will be helpful to design proactive drought mitigation and preparedness strategies by considering conjunctive use of surface and groundwater. It also provides a framework to evaluate groundwater drought risk in other parts of the world.
    publisherASCE
    titleConnection between Meteorological and Groundwater Drought with Copula-Based Bivariate Frequency Analysis
    typeJournal Paper
    journal volume26
    journal issue7
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0002089
    journal fristpage05021015-1
    journal lastpage05021015-14
    page14
    treeJournal of Hydrologic Engineering:;2021:;Volume ( 026 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian