YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Complex Rating Curves for Sharp Crested Orifices and Rectangular or Triangular Weirs under Unsteady Flow Conditions

    Source: Journal of Hydrologic Engineering:;2021:;Volume ( 026 ):;issue: 004::page 04021005-1
    Author:
    Giorgio Baiamonte
    DOI: 10.1061/(ASCE)HE.1943-5584.0002057
    Publisher: ASCE
    Abstract: The importance of discharge measurements is fully acknowledged in many research fields, mostly in hydrology. Numerous measurement devices and various overflow structures have been proposed for discharge measurements; however, their use is based on calibrated simple stage discharge relationships that may cause significant errors when unsteady flow conditions occur. This issue is quite common because of rainfall and runoff temporal variability that inhibits the achievement of the steady state. Although this issue has already been experimentally investigated, it seems that a physically based line of approach has not been attempted before. In this paper, unsteady stage discharge relationships on a theoretical basis are derived for the most common shapes of weirs. According to previous experimental investigations, a transposition of the simple (steady-state) rating curve occurs, with higher input discharges than those under steady state, when the water level rises, and with lower input discharges, when the water level falls. The corresponding time to equilibrium is also studied and two different applications are performed. Finally, when the outflow process is unsteady, an error analysis quantitatively shows that using simple rating curves may determine high errors in discharge measurements, which decrease more and more at the attaining of the steady state, where no transposition of the rating curve occurs. Triangular weirs result more sensitive to the unsteadiness than rectangular weirs, which in turn result more sensitive than the sharp crested orifices. The suggested procedure could be relevant to improve the accuracy in the discharge estimate, as it could be demonstrated by comparing the discharges derived by the proposed procedure and the ones provided by the application of hydrodynamic and rainfall-runoff models.
    • Download: (2.064Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Complex Rating Curves for Sharp Crested Orifices and Rectangular or Triangular Weirs under Unsteady Flow Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271576
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorGiorgio Baiamonte
    date accessioned2022-02-01T00:31:37Z
    date available2022-02-01T00:31:37Z
    date issued4/1/2021
    identifier other%28ASCE%29HE.1943-5584.0002057.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271576
    description abstractThe importance of discharge measurements is fully acknowledged in many research fields, mostly in hydrology. Numerous measurement devices and various overflow structures have been proposed for discharge measurements; however, their use is based on calibrated simple stage discharge relationships that may cause significant errors when unsteady flow conditions occur. This issue is quite common because of rainfall and runoff temporal variability that inhibits the achievement of the steady state. Although this issue has already been experimentally investigated, it seems that a physically based line of approach has not been attempted before. In this paper, unsteady stage discharge relationships on a theoretical basis are derived for the most common shapes of weirs. According to previous experimental investigations, a transposition of the simple (steady-state) rating curve occurs, with higher input discharges than those under steady state, when the water level rises, and with lower input discharges, when the water level falls. The corresponding time to equilibrium is also studied and two different applications are performed. Finally, when the outflow process is unsteady, an error analysis quantitatively shows that using simple rating curves may determine high errors in discharge measurements, which decrease more and more at the attaining of the steady state, where no transposition of the rating curve occurs. Triangular weirs result more sensitive to the unsteadiness than rectangular weirs, which in turn result more sensitive than the sharp crested orifices. The suggested procedure could be relevant to improve the accuracy in the discharge estimate, as it could be demonstrated by comparing the discharges derived by the proposed procedure and the ones provided by the application of hydrodynamic and rainfall-runoff models.
    publisherASCE
    titleComplex Rating Curves for Sharp Crested Orifices and Rectangular or Triangular Weirs under Unsteady Flow Conditions
    typeJournal Paper
    journal volume26
    journal issue4
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0002057
    journal fristpage04021005-1
    journal lastpage04021005-16
    page16
    treeJournal of Hydrologic Engineering:;2021:;Volume ( 026 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian