YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation of Soil Arching under Cyclic Loading Using the Discrete Element Method

    Source: International Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 007::page 04021117-1
    Author:
    Ning Bao
    ,
    Jing Wei
    ,
    Jian-feng Chen
    ,
    Akosah Stephen
    DOI: 10.1061/(ASCE)GM.1943-5622.0002090
    Publisher: ASCE
    Abstract: This paper presents an analysis of the soil arching effect associated with piled embankments under cyclic loading by developing a series of two-dimensional trapdoor discrete numerical models. After identification of the microparameters by a biaxial compression test, the numerical models were validated by comparing the numerical model and plane laboratory test results. The contact force characteristics, deformation behaviors, and porosity distributions under various embankment heights were analyzed. The numerical results showed that cyclic loading leads to the degradation of soil arching as characterized by the collapse of load transmission paths and their vertical distribution. The variability observed in the contact fabric further confirmed that degradation in the higher embankment mainly occurred in the upper layers. Increasing embankment height decelerated the increasing contact force of the portion above the trapdoor and thus retarded the process of degradation. The load-induced time-dependent surface settlement accumulated with increasing cycle numbers and varied with embankment height. With an increasing number of cycles, the deformation area in the lower embankment cases above the trapdoor shifted from a triangular pattern to a rectangular pattern, while the higher embankment still maintained a triangular pattern. Furthermore, the effects of the localized loading area, stationary support width, and trapdoor displacement on soil arching concerning the loading efficiency and surface settlement were evaluated.
    • Download: (4.953Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation of Soil Arching under Cyclic Loading Using the Discrete Element Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271429
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorNing Bao
    contributor authorJing Wei
    contributor authorJian-feng Chen
    contributor authorAkosah Stephen
    date accessioned2022-02-01T00:26:03Z
    date available2022-02-01T00:26:03Z
    date issued7/1/2021
    identifier other%28ASCE%29GM.1943-5622.0002090.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271429
    description abstractThis paper presents an analysis of the soil arching effect associated with piled embankments under cyclic loading by developing a series of two-dimensional trapdoor discrete numerical models. After identification of the microparameters by a biaxial compression test, the numerical models were validated by comparing the numerical model and plane laboratory test results. The contact force characteristics, deformation behaviors, and porosity distributions under various embankment heights were analyzed. The numerical results showed that cyclic loading leads to the degradation of soil arching as characterized by the collapse of load transmission paths and their vertical distribution. The variability observed in the contact fabric further confirmed that degradation in the higher embankment mainly occurred in the upper layers. Increasing embankment height decelerated the increasing contact force of the portion above the trapdoor and thus retarded the process of degradation. The load-induced time-dependent surface settlement accumulated with increasing cycle numbers and varied with embankment height. With an increasing number of cycles, the deformation area in the lower embankment cases above the trapdoor shifted from a triangular pattern to a rectangular pattern, while the higher embankment still maintained a triangular pattern. Furthermore, the effects of the localized loading area, stationary support width, and trapdoor displacement on soil arching concerning the loading efficiency and surface settlement were evaluated.
    publisherASCE
    titleInvestigation of Soil Arching under Cyclic Loading Using the Discrete Element Method
    typeJournal Paper
    journal volume21
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002090
    journal fristpage04021117-1
    journal lastpage04021117-16
    page16
    treeInternational Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian