YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reliability-Based Lifetime Fatigue Damage Assessment of Offshore Composite Wind Turbine Blades

    Source: Journal of Aerospace Engineering:;2021:;Volume ( 034 ):;issue: 003::page 04021019-1
    Author:
    Chizhi Zhang
    ,
    Hua-Peng Chen
    ,
    Kong Fah Tee
    ,
    Dongfang Liang
    DOI: 10.1061/(ASCE)AS.1943-5525.0001260
    Publisher: ASCE
    Abstract: This paper presents a method for stochastic deterioration modeling and fatigue damage assessment for composite wind turbine blades operating in offshore environments. The fatigue damage of the composite blades is analyzed and assessed based on the estimates for the applied loads along the blade span, stress analysis, fatigue crack evolution, and lifetime probability of fatigue failure. The complex stress states of the blade are mainly caused by the aerodynamic loads generated by corrected blade element momentum theory, gravity loads, and centrifugal loads. The fatigue of the wind turbine blade is then investigated on the basis of the actual fatigue damage propagation process. The stochastic gamma process is introduced to calculate the probability of fatigue failure of the blade for various critical limits, and these results together with lifecycle cost analysis are employed to determine the optimum maintenance strategy. Finally, a numerical example for a National Renewable Energy Laboratory 5-MW wind turbine blade is adopted to demonstrate the applicability of the proposed method. The numerical results show that the proposed approach can provide a reliable tool for estimating stress states, evaluating fatigue damage, analyzing lifetime fatigue failure probability, and optimizing repair time of the composite wind turbine blade.
    • Download: (2.385Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reliability-Based Lifetime Fatigue Damage Assessment of Offshore Composite Wind Turbine Blades

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271403
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorChizhi Zhang
    contributor authorHua-Peng Chen
    contributor authorKong Fah Tee
    contributor authorDongfang Liang
    date accessioned2022-02-01T00:25:06Z
    date available2022-02-01T00:25:06Z
    date issued5/1/2021
    identifier other%28ASCE%29AS.1943-5525.0001260.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271403
    description abstractThis paper presents a method for stochastic deterioration modeling and fatigue damage assessment for composite wind turbine blades operating in offshore environments. The fatigue damage of the composite blades is analyzed and assessed based on the estimates for the applied loads along the blade span, stress analysis, fatigue crack evolution, and lifetime probability of fatigue failure. The complex stress states of the blade are mainly caused by the aerodynamic loads generated by corrected blade element momentum theory, gravity loads, and centrifugal loads. The fatigue of the wind turbine blade is then investigated on the basis of the actual fatigue damage propagation process. The stochastic gamma process is introduced to calculate the probability of fatigue failure of the blade for various critical limits, and these results together with lifecycle cost analysis are employed to determine the optimum maintenance strategy. Finally, a numerical example for a National Renewable Energy Laboratory 5-MW wind turbine blade is adopted to demonstrate the applicability of the proposed method. The numerical results show that the proposed approach can provide a reliable tool for estimating stress states, evaluating fatigue damage, analyzing lifetime fatigue failure probability, and optimizing repair time of the composite wind turbine blade.
    publisherASCE
    titleReliability-Based Lifetime Fatigue Damage Assessment of Offshore Composite Wind Turbine Blades
    typeJournal Paper
    journal volume34
    journal issue3
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001260
    journal fristpage04021019-1
    journal lastpage04021019-11
    page11
    treeJournal of Aerospace Engineering:;2021:;Volume ( 034 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian