YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    BiLSTM-Based Soil–Structure Interface Modeling

    Source: International Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 007::page 04021096-1
    Author:
    Pin Zhang
    ,
    Yi Yang
    ,
    Zhen-Yu Yin
    DOI: 10.1061/(ASCE)GM.1943-5622.0002058
    Publisher: ASCE
    Abstract: Deep learning (DL) algorithm bidirectional long short-term memory (BiLSTM) neural network is employed to model behaviors of the soil–structure interface in this study, as a pioneer research work to investigate the feasibility of using DL to model interface behaviors. Datasets are collected from 12 constant normal stress and 20 constant normal stiffness sand–structure interface tests. A modeling framework with the integration of BiLSTM is thereafter proposed. The results indicate that the BiLSTM-based model can accurately capture the responses of interface behaviors including volumetric dilatancy and strain hardening on the dense samples and volumetric contraction and strain softening on the loose samples, respectively. The effects of surface roughness, soil relative density, and normal stiffness on the interface behaviors are also investigated using the BiLSTM-based model. The predicted normal stress, shear stress, and normal displacement show good agreement with measured results.
    • Download: (1.112Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      BiLSTM-Based Soil–Structure Interface Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271399
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorPin Zhang
    contributor authorYi Yang
    contributor authorZhen-Yu Yin
    date accessioned2022-02-01T00:24:55Z
    date available2022-02-01T00:24:55Z
    date issued7/1/2021
    identifier other%28ASCE%29GM.1943-5622.0002058.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271399
    description abstractDeep learning (DL) algorithm bidirectional long short-term memory (BiLSTM) neural network is employed to model behaviors of the soil–structure interface in this study, as a pioneer research work to investigate the feasibility of using DL to model interface behaviors. Datasets are collected from 12 constant normal stress and 20 constant normal stiffness sand–structure interface tests. A modeling framework with the integration of BiLSTM is thereafter proposed. The results indicate that the BiLSTM-based model can accurately capture the responses of interface behaviors including volumetric dilatancy and strain hardening on the dense samples and volumetric contraction and strain softening on the loose samples, respectively. The effects of surface roughness, soil relative density, and normal stiffness on the interface behaviors are also investigated using the BiLSTM-based model. The predicted normal stress, shear stress, and normal displacement show good agreement with measured results.
    publisherASCE
    titleBiLSTM-Based Soil–Structure Interface Modeling
    typeJournal Paper
    journal volume21
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002058
    journal fristpage04021096-1
    journal lastpage04021096-9
    page9
    treeInternational Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian