YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Earth Pressures on Retaining Walls Backfilled with Sand Admixed with Building Derived Materials: Laboratory Scale Study

    Source: International Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 006::page 04021072-1
    Author:
    Jayatheja Muktinutalapati
    ,
    Anasua GuhaRay
    DOI: 10.1061/(ASCE)GM.1943-5622.0002030
    Publisher: ASCE
    Abstract: Earth retaining structures are constructed to withstand lateral pressure from backfill soil and surcharge pressures from the foundations of adjacent structures. Although sands are considered as the most suitable backfill material for retaining walls due to their high permeability, currently the scarcity of this natural material has raised serious environmental concerns. This study will propose the usage of building derived materials (BDM) as a partial replacement for sand as backfill material for the retaining walls. The utilization of this waste material will help to reduce the cost related to the disposal of waste materials, as well as reducing the carbon footprint, therefore making the process eco-friendly and sustainable. Experimental studies will be conducted on a laboratory scale prototype rigid, nonyielding retaining wall, which can rotate about its base to simulate rotational failure conditions. The width of the backfill was 0.35, 0.5, and 0.65H to assess its effect on the variation of earth pressures (H = height of the retaining wall). The experimental results indicate that the earth pressures were not significantly enhanced by the addition of BDM to sand, which suggests that BDM could be used as an effective lightweight backfill. The optimum pressure was obtained by mixing 20% of BDM with red soil. For backfills that had sufficient widths, the failure surfaces had adequate space to fully develop, whereas it had a limited extension in a narrow backfill. An increase in backfill width (b) decreased the rotation of the wall, therefore reducing the probability of rotational failure. Numerical simulations using finite element software PLAXIS 2D are conducted with the experiments to validate the observations. The numerical results suggest good agreement with that of experimental results.
    • Download: (2.270Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Earth Pressures on Retaining Walls Backfilled with Sand Admixed with Building Derived Materials: Laboratory Scale Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4271375
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorJayatheja Muktinutalapati
    contributor authorAnasua GuhaRay
    date accessioned2022-02-01T00:23:57Z
    date available2022-02-01T00:23:57Z
    date issued6/1/2021
    identifier other%28ASCE%29GM.1943-5622.0002030.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4271375
    description abstractEarth retaining structures are constructed to withstand lateral pressure from backfill soil and surcharge pressures from the foundations of adjacent structures. Although sands are considered as the most suitable backfill material for retaining walls due to their high permeability, currently the scarcity of this natural material has raised serious environmental concerns. This study will propose the usage of building derived materials (BDM) as a partial replacement for sand as backfill material for the retaining walls. The utilization of this waste material will help to reduce the cost related to the disposal of waste materials, as well as reducing the carbon footprint, therefore making the process eco-friendly and sustainable. Experimental studies will be conducted on a laboratory scale prototype rigid, nonyielding retaining wall, which can rotate about its base to simulate rotational failure conditions. The width of the backfill was 0.35, 0.5, and 0.65H to assess its effect on the variation of earth pressures (H = height of the retaining wall). The experimental results indicate that the earth pressures were not significantly enhanced by the addition of BDM to sand, which suggests that BDM could be used as an effective lightweight backfill. The optimum pressure was obtained by mixing 20% of BDM with red soil. For backfills that had sufficient widths, the failure surfaces had adequate space to fully develop, whereas it had a limited extension in a narrow backfill. An increase in backfill width (b) decreased the rotation of the wall, therefore reducing the probability of rotational failure. Numerical simulations using finite element software PLAXIS 2D are conducted with the experiments to validate the observations. The numerical results suggest good agreement with that of experimental results.
    publisherASCE
    titleEarth Pressures on Retaining Walls Backfilled with Sand Admixed with Building Derived Materials: Laboratory Scale Study
    typeJournal Paper
    journal volume21
    journal issue6
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002030
    journal fristpage04021072-1
    journal lastpage04021072-12
    page12
    treeInternational Journal of Geomechanics:;2021:;Volume ( 021 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian